Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Biodiversity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Role and benefits of biodiversity == [[File:Field Hamois Belgium Luc Viatour.jpg|thumb|upright|Summer field in [[Belgium]] (Hamois). The blue flowers are ''[[Centaurea cyanus]]'' and the red are ''[[Papaver rhoeas]]''.]] ===Ecosystem services=== {{further|Ecosystem services|Ecological effects of biodiversity}} There have been many claims about biodiversity's effect on the [[Ecosystem service|ecosystem services]], especially ''provisioning'' and ''regulating services''.<ref name="diversity-loss-and-its-impact">{{cite journal |last1=Cardinale |first1=Bradley J. |last2=Duffy |first2=J. Emmett |last3=Gonzalez |first3=Andrew |last4=Hooper |first4=David U. |last5=Perrings |first5=Charles |last6=Venail |first6=Patrick |last7=Narwani |first7=Anita |last8=Mace |first8=Georgina M. |last9=Tilman |first9=David |last10=Wardle |first10=David A. |last11=Kinzig |first11=Ann P. |last12=Daily |first12=Gretchen C. |last13=Loreau |first13=Michel |last14=Grace |first14=James B. |last15=Larigauderie |first15=Anne |last16=Srivastava |first16=Diane S. |last17=Naeem |first17=Shahid |title=Biodiversity loss and its impact on humanity |journal=Nature |date=7 June 2012 |volume=486 |issue=7401 |pages=59–67 |doi=10.1038/nature11148 |pmid=22678280 |bibcode=2012Natur.486...59C |url=https://pub.epsilon.slu.se/10240/7/wardle_d_etal_130415.pdf }}</ref> Some of those claims have been validated, some are incorrect and some lack enough evidence to draw definitive conclusions.<ref name="diversity-loss-and-its-impact" /> Ecosystem services have been grouped in three types:<ref name="diversity-loss-and-its-impact" /> # Provisioning services which involve the production of renewable resources (e.g.: food, wood, fresh water) # Regulating services which are those that lessen environmental change (e.g.: climate regulation, pest/disease control) # Cultural services represent human value and enjoyment (e.g.: landscape aesthetics, cultural heritage, outdoor recreation and spiritual significance)<ref>{{cite journal |last1=Daniel |first1=Terry C. |last2=Muhar |first2=Andreas |last3=Arnberger |first3=Arne |last4=Aznar |first4=Olivier |last5=Boyd |first5=James W. |last6=Chan |first6=Kai M. A. |last7=Costanza |first7=Robert |last8=Elmqvist |first8=Thomas |last9=Flint |first9=Courtney G. |last10=Gobster |first10=Paul H. |last11=Grêt-Regamey |first11=Adrienne |last12=Lave |first12=Rebecca |last13=Muhar |first13=Susanne |last14=Penker |first14=Marianne |last15=Ribe |first15=Robert G. |last16=Schauppenlehner |first16=Thomas |last17=Sikor |first17=Thomas |last18=Soloviy |first18=Ihor |last19=Spierenburg |first19=Marja |last20=Taczanowska |first20=Karolina |last21=Tam |first21=Jordan |last22=von der Dunk |first22=Andreas |title=Contributions of cultural services to the ecosystem services agenda |journal=Proceedings of the National Academy of Sciences |date=5 June 2012 |volume=109 |issue=23 |pages=8812–8819 |doi=10.1073/pnas.1114773109 |doi-access=free |pmid=22615401 |pmc=3384142 |bibcode=2012PNAS..109.8812D }}</ref> Experiments with controlled environments have shown that humans cannot easily build ecosystems to support human needs;<ref>{{cite news |last=Broad |first=William |date=19 November 1996 |title=Paradise Lost: Biosphere Retooled as Atmospheric Nightmare |url=https://www.nytimes.com/1996/11/19/science/paradise-lost-biosphere-retooled-as-atmospheric-nightmare.html |access-date=10 April 2013 |newspaper=The New York Times}}</ref> for example [[entomophily|insect pollination]] cannot be mimicked, though there have been attempts to create artificial pollinators using [[unmanned aerial vehicles]].<ref>{{cite news |last1=Ponti |first1=Crystal |date=3 March 2017 |title=Rise of the Robot Bees: Tiny Drones Turned into Artificial Pollinators |url=https://www.npr.org/sections/thesalt/2017/03/03/517785082/rise-of-the-robot-bees-tiny-drones-turned-into-artificial-pollinators |access-date=18 January 2018 |agency=NPR}}</ref> The economic activity of pollination alone represented between $2.1–14.6 billion in 2003.<ref>{{cite journal |last=LOSEY |first=JOHN E. |author2=VAUGHAN, MACE |date=1 January 2006 |title=The Economic Value of Ecological Services Provided by Insects |journal=BioScience |volume=56 |issue=4 |pages=311 |doi=10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2 |doi-access=free}}</ref> Other sources have reported somewhat conflicting results and in 1997 [[Robert Costanza]] and his colleagues reported the estimated global value of ecosystem services (not captured in traditional markets) at an average of $33 trillion annually.<ref name="nature.com">{{cite journal |last1=Costanza |first1=Robert |last2=d'Arge |first2=Ralph |last3=de Groot |first3=Rudolf |last4=Farber |first4=Stephen |last5=Grasso |first5=Monica |last6=Hannon |first6=Bruce |last7=Limburg |first7=Karin |last8=Naeem |first8=Shahid |last9=O'Neill |first9=Robert V. |last10=Paruelo |first10=Jose |last11=Raskin |first11=Robert G. |last12=Sutton |first12=Paul |last13=van den Belt |first13=Marjan |title=The value of the world's ecosystem services and natural capital |journal=Nature |date=May 1997 |volume=387 |issue=6630 |pages=253–260 |doi=10.1038/387253a0 |bibcode=1997Natur.387..253C |url=https://discovery.ucl.ac.uk/id/eprint/10189378/ }}</ref> ==== Provisioning services ==== With regards to provisioning services, greater species diversity has the following benefits: * Greater species diversity of plants increases fodder yield (synthesis of 271 experimental studies).<ref name="the-functional-role-of-producer-diversity">{{cite journal |last1=Cardinale |first1=Bradley J. |last2=Matulich |first2=Kristin L. |last3=Hooper |first3=David U. |last4=Byrnes |first4=Jarrett E. |last5=Duffy |first5=Emmett |last6=Gamfeldt |first6=Lars |last7=Balvanera |first7=Patricia |last8=O'Connor |first8=Mary I. |last9=Gonzalez |first9=Andrew |title=The functional role of producer diversity in ecosystems |journal=American Journal of Botany |date=March 2011 |volume=98 |issue=3 |pages=572–592 |doi=10.3732/ajb.1000364 |pmid=21613148 |bibcode=2011AmJB...98..572C |hdl=2027.42/141994 |hdl-access=free }}</ref> * Greater species diversity of plants (i.e. diversity within a single species) increases overall [[crop yield]] (synthesis of 575 experimental studies).<ref name="grain-yield-increase-in-cereal-variety-mixtures">{{cite journal|last=Kiaer|first=Lars P.|author2=Skovgaard, M. |author3=Østergård, Hanne|title=Grain yield increase in cereal variety mixtures: A meta-analysis of field trials|journal=Field Crops Research|date=1 December 2009|volume=114|issue=3|pages=361–373|doi=10.1016/j.fcr.2009.09.006|bibcode=2009FCrRe.114..361K }}</ref> Although another review of 100 experimental studies reported mixed evidence.<ref name="does-plant-diversity-benefit-agroecosystems">{{cite journal|last=Letourneau|first=Deborah K. |title=Does plant diversity benefit agroecosystems? A synthetic review|journal=[[Ecological Applications]]|date=1 January 2011|volume=21|issue=1|pages=9–21|doi=10.1890/09-2026.1|pmid=21516884|bibcode=2011EcoAp..21....9L }}</ref> * Greater species diversity of trees increases overall [[wood production]] (synthesis of 53 experimental studies).<ref name="tree-growth-in-monocultures-and-mixed">{{cite journal|last=Piotto|first=Daniel|title=A meta-analysis comparing tree growth in monocultures and mixed plantations|journal=[[Forest Ecology and Management]]|date=1 March 2008|volume=255|issue=3–4|pages=781–786|doi=10.1016/j.foreco.2007.09.065|bibcode=2008ForEM.255..781P }}</ref> However, there is not enough data to draw a conclusion about the effect of tree trait diversity on wood production.<ref name="diversity-loss-and-its-impact" /> ==== Regulating services ==== With regards to regulating services, greater species diversity has the following benefits: Greater species diversity * of fish increases the stability of [[fisheries]] yield (synthesis of 8 observational studies)<ref name="diversity-loss-and-its-impact" /> * of plants increases [[carbon sequestration]], but note that this finding only relates to actual uptake of carbon dioxide and not long-term storage; synthesis of 479 experimental studies)<ref name="the-functional-role-of-producer-diversity" /> * of plants increases [[soil nutrient]] [[remineralization]] (synthesis of 103 experimental studies), increases soil organic matter (synthesis of 85 experimental studies) and decreases disease prevalence on plants (synthesis of 107 experimental studies)<ref name="plant-diversity-enhances-provision-of-ecosystem-services">{{cite journal |last1=Quijas |first1=Sandra |last2=Schmid |first2=Bernhard |last3=Balvanera |first3=Patricia |title=Plant diversity enhances provision of ecosystem services: A new synthesis |journal=Basic and Applied Ecology |date=November 2010 |volume=11 |issue=7 |pages=582–593 |doi=10.1016/j.baae.2010.06.009 |bibcode=2010BApEc..11..582Q |url=https://www.zora.uzh.ch/id/eprint/39775/11/Quijas_etal_BAE10.pdf }}</ref> * of natural pest enemies decreases herbivorous pest populations (data from two separate reviews; synthesis of 266 experimental and observational studies;<ref name="annual-review-ecology-evolution-systematics-vol-40">{{cite book |url={{google books |plainurl=y |id=2zifbwAACAAJ|page=573}} |title=Annual Review of Ecology, Evolution and Systematics: Vol 40 2009 |date=1 January 2009 |publisher=Annual Reviews |isbn=978-0-8243-1440-8 |editor-last1=Futuyma |editor-first1=Douglas J. |location=Palo Alto, Calif. |pages=573–592 |editor-last2=Shaffer |editor-first2=H. Bradley |editor-last3=Simberloff |editor-first3=Daniel}}</ref> Synthesis of 18 observational studies.<ref name="functional-richness-and-ecosystem-services-bird-pred">{{cite journal |last=Philpott |first=Stacy M. |author-link=Stacy Philpott |author2=Soong, Oliver |author3=Lowenstein, Jacob H. |author4=Pulido, Astrid Luz |author5=Lopez, Diego Tobar |date=1 October 2009 |others=Flynn, Dan F. B.; DeClerck, Fabrice |title=Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems |journal=Ecological Applications |volume=19 |issue=7 |pages=1858–1867 |bibcode=2009EcoAp..19.1858P |doi=10.1890/08-1928.1 |pmid=19831075 }}</ref><ref name="birds-as-predators-in-trop-agroforestry">{{cite journal |last1=Bael |first1=Sunshine A. Van |last2=Philpott |first2=Stacy M. |last3=Greenberg |first3=Russell |last4=Bichier |first4=Peter |last5=Barber |first5=Nicholas A. |last6=Mooney |first6=Kailen A. |last7=Gruner |first7=Daniel S. |title=Birds as Predators in Tropical Agroforestry Systems |journal=Ecology |date=April 2008 |volume=89 |issue=4 |pages=928–934 |doi=10.1890/06-1976.1 |pmid=18481517 |bibcode=2008Ecol...89..928V |hdl=1903/7873 |hdl-access=free }}</ref> Although another review of 38 experimental studies found mixed support for this claim, suggesting that in cases where mutual intraguild predation occurs, a single predatory species is often more effective<ref name="influence-of-intraguild-predation">{{cite journal |last1=Vance-Chalcraft |first1=Heather D. |last2=Rosenheim |first2=Jay A. |last3=Vonesh |first3=James R. |last4=Osenberg |first4=Craig W. |last5=Sih |first5=Andrew |title=The Influence of Intraguild Predation on Prey Suppression and Prey Release: A Meta-Analysis |journal=Ecology |date=November 2007 |volume=88 |issue=11 |pages=2689–2696 |doi=10.1890/06-1869.1 |pmid=18051635 |bibcode=2007Ecol...88.2689V }}</ref> ===Agriculture=== {{Main|Agricultural biodiversity}} [[File:Ueberladewagen (jha).jpg|thumb|right|[[Agriculture]] production, pictured is a [[tractor]] and a [[chaser bin]]]]Agricultural diversity can be divided into two categories: [[genetic diversity|intraspecific diversity]], which includes the genetic variation within a single species, like the potato (''[[Solanum tuberosum]]'') that is composed of many different forms and types (e.g. in the U.S. they might compare russet potatoes with new potatoes or purple potatoes, all different, but all part of the same species, ''S. tuberosum''). The other category of agricultural diversity is called [[species diversity|interspecific diversity]] and refers to the number and types of different species. Agricultural diversity can also be divided by whether it is 'planned' diversity or 'associated' diversity. This is a functional classification that we impose and not an intrinsic feature of life or diversity. Planned diversity includes the crops which a farmer has encouraged, planted or raised (e.g. crops, covers, symbionts, and livestock, among others), which can be contrasted with the associated diversity that arrives among the crops, uninvited (e.g. herbivores, weed species and pathogens, among others).<ref name="ecology-of-agroecosystems">{{cite book|first=John H. |last=Vandermeer|title=The Ecology of Agroecosystems|url={{google books |plainurl=y |id=AFRQSuQGHiIC}}|year=2011|publisher=Jones & Bartlett Learning|isbn=978-0-7637-7153-9}}</ref> Associated biodiversity can be damaging or beneficial. The beneficial associated biodiversity include for instance wild pollinators such as wild bees and [[syrphid]] flies that pollinate crops<ref name="IPBES">{{cite web |last1=IPBES |title=Assessment Report on Pollinators, Pollination and Food Production |url=https://ipbes.net/assessment-reports/pollinators |website=ipbes.org |date=26 June 2018 |publisher=IPBES |access-date=13 April 2021}}</ref> and natural enemies and antagonists to pests and pathogens. Beneficial associated biodiversity occurs abundantly in crop fields and provide multiple [[ecosystem services]] such as pest control, [[nutrient cycling]] and pollination that support crop production.<ref>{{cite journal |last1=Bommarco |title=Ecological intensification: harnessing ecosystem services for food security |journal=Trends in Ecology and Evolution |date=2013 |volume=28 |issue=4 |pages=230–238 |doi=10.1016/j.tree.2012.10.012 |pmid=23153724 |bibcode=2013TEcoE..28..230B }}</ref> Although about 80 percent of humans' food supply comes from just 20 kinds of plants,<ref>{{Cite book|title=Natural Resources – Technology, Economics & Policy|last=Aswathanarayana|first=Uppugunduri|publisher=CRC Press|year=2012|isbn=978-0-203-12399-7|location=Leiden, Netherlands|pages=370}}</ref> humans use at least 40,000 species.<ref>{{Cite book|title=Natural Resources – Technology, Economics & Policy|last=Aswathanarayana|first=Uppugunduri|publisher=CRC Press|year=2012|isbn=978-0-203-12399-7|location=Leiden. Netherlands|pages=370}}</ref> Earth's surviving biodiversity provides resources for increasing the range of food and other products suitable for human use, although the present extinction rate shrinks that potential.<ref name="Wilson2002" /> ===Human health=== [[File:Forest fruits from Barro Colorado.png|thumb|upright|The diverse forest canopy on [[Barro Colorado Island]], Panama, yielded this display of different fruit]] Biodiversity's relevance to human health is becoming an international political issue, as scientific evidence builds on the global health implications of biodiversity loss.<ref>World Health Organization(WHO) and Secretariat of the Convention on Biological Diversity (2015) [https://web.archive.org/web/20150604163250/http://www.who.int/globalchange/publications/biodiversity-human-health/en/ Connecting Global Priorities: Biodiversity and Human Health, a State of Knowledge Review ]. See also [http://www.cbd.int/health/ Website of the Secretariat of the Convention on Biological Diversity on biodiversity and health]. Other relevant resources include [http://www.cohabnet.org/en_resources_reports.htm Reports of the 1st and 2nd International Conferences on Health and Biodiversity.] {{Webarchive|url=https://web.archive.org/web/20090107015716/http://www.cohabnet.org/en_resources_reports.htm |date=7 January 2009 }} See also: [http://www.cohabnet.org/ Website of the UN COHAB Initiative] {{Webarchive|url=https://web.archive.org/web/20090204054347/http://www.cohabnet.org/ |date=4 February 2009 }}</ref><ref name="biodiversity1">{{cite book|editor-first=Eric |editor-last=Chivian|title=Sustaining Life: How Human Health Depends on Biodiversity|url={{google books |plainurl=y |id=n4ET74GCMG0C}}|date=15 May 2008|publisher=OUP US|isbn=978-0-19-517509-7}}</ref><ref name="CorvalánHales2005">{{cite book |first1=Carlos |last1=Corvalán |first2=Simon |last2=Hales |author3=Anthony J. McMichael|title=Ecosystems and Human Well-being: Health Synthesis|url={{google books |plainurl=y |id=vKIXu2Z-9QsC|page=28}}|year=2005|publisher=World Health Organization|isbn=978-92-4-156309-3|pages=28}}</ref> This issue is closely linked with the issue of [[climate change]],<ref>(2009) [http://www.cbd.int/climate/ "Climate Change and Biological Diversity"] Convention on Biological Diversity Retrieved 5 November 2009</ref> as many of the anticipated [[health risks of climate change]] are associated with changes in biodiversity (e.g. changes in populations and distribution of disease vectors, scarcity of fresh water, impacts on agricultural biodiversity and food resources etc.). This is because the species most likely to disappear are those that buffer against infectious disease transmission, while surviving species tend to be the ones that increase disease transmission, such as that of West Nile Virus, [[Lyme disease]] and Hantavirus, according to a study done co-authored by Felicia Keesing, an ecologist at Bard College and Drew Harvell, associate director for Environment of the [[Atkinson Center for a Sustainable Future]] (ACSF) at [[Cornell University]].<ref>{{cite news|last=Ramanujan|first=Krishna|title=Study: Loss of species is bad for your health|url=http://www.news.cornell.edu/stories/Dec10/BiodiversityHealth.html|access-date=20 July 2011|newspaper=Cornell Chronicle|date=2 December 2010}}</ref> Some of the health issues influenced by biodiversity include dietary health and nutrition security, infectious disease, medical science and medicinal resources, social and psychological health.<ref>{{cite journal | doi = 10.1098/rsbl.2007.0149 | title = Psychological benefits of greenspace increase with biodiversity | year = 2007 | last1 = Gaston | first1 = Kevin J. | last2 = Warren | first2 = Philip H. | last3 = Devine-Wright | first3 = Patrick | last4 = Irvine | first4 = Katherine N. | last5 = Fuller | first5 = Richard A. | journal = Biology Letters | volume = 3 | issue = 4 | pages = 390–394 | pmid = 17504734 | pmc = 2390667 }}</ref> Biodiversity is also known to have an important role in reducing disaster risk, including rising sea levels. For example, wetland ecosystems along coastal communities serve as excellent water filtration systems, storage, and ultimately create a buffer region between the ocean and mainland neighborhoods in order to prevent water reaching these communities under climate change pressures or storm storages. Other examples of diverse species or organisms are present around the world, offering their resourceful utilities to provide protection of human survival. <ref>{{Cite web |date=2023-11-01 |title=Protecting nature to minimize disaster risks {{!}} UNDRR |url=https://www.undrr.org/news/protecting-nature-minimize-disaster-risks |access-date=2025-05-06 |website=www.undrr.org |language=en}}</ref> Biodiversity provides critical support for drug discovery and the availability of medicinal resources.<ref>{{cite journal |last1=Mendelsohn |first1=Robert |last2=Balick |first2=Michael J. |title=The value of undiscovered pharmaceuticals in tropical forests |journal=Economic Botany |date=April 1995 |volume=49 |issue=2 |pages=223–228 |doi=10.1007/BF02862929 |bibcode=1995EcBot..49..223M }}</ref><ref> (2006) "Molecular Pharming" GMO Compass Retrieved 5 November 2009, [http://www.gmo-compass.org/eng/home/ GMOcompass.org] {{webarchive|url=https://web.archive.org/web/20080208171633/http://www.gmo-compass.org/eng/home/ |date=8 February 2008 }}</ref> A significant proportion of drugs are derived, directly or indirectly, from biological sources: at least 50% of the pharmaceutical compounds on the US market are derived from plants, animals and [[microorganism]]s, while about 80% of the world population depends on medicines from nature (used in either modern or traditional medical practice) for primary healthcare.<ref name="biodiversity1" /> Only a tiny fraction of wild species has been investigated for medical potential. [[Marine ecosystem|Marine ecosystems]] are particularly important, especially their chemical and physical properties that have paved the way for numerous pharmaceutical achievements; the immense diversity of marine organisms have led to scientific discoveries including medical treatments to cancer, viral bacteria, AIDS, etc. <ref>{{cite journal |last1=Jain |first1=Roopesh |last2=Sonawane |first2=Shailendra |last3=Mandrekar |first3=Noopur |title=Marine organisms: Potential source for drug discovery |journal=Current Science |date=2008 |volume=94 |issue=3 |pages=292 |jstor=24100323 }}</ref> This process of [[bioprospecting]] can increase biodiversity loss, as well as violating the laws of the communities and states from which the resources are taken.<ref>{{cite journal |last1=Dhillion |first1=Shivcharn S. |last2=Svarstad |first2=Hanne |last3=Amundsen |first3=Cathrine |last4=Bugge |first4=Hans Chr. |title=Bioprospecting: Effects on Environment and Development |journal=Ambio: A Journal of the Human Environment |date=2002 |volume=31 |issue=6 |pages=491–493 |doi=10.1639/0044-7447(2002)031[0491:beoead]2.0.co;2 |pmid=12436849 }}</ref><ref>{{cite journal | doi=10.1136/bmj.330.7504.1350-d | title=Looking for new compounds in sea is endangering ecosystem | last1=Cole | first1=A. | journal=[[BMJ]] | volume=330 | issue=7504 | page=1350 |date=16 July 2005 | pmid=15947392 | pmc=558324}}</ref><ref>{{cite web |url=http://www.cohabnet.org/en_issue4.htm |title=COHAB Initiative – on Natural Products and Medicinal Resources |publisher=Cohabnet.org |access-date=21 June 2009 |archive-url=https://web.archive.org/web/20171025100247/http://cohabnet.org/en_issue4.htm |archive-date=25 October 2017 |url-status=dead }}</ref> ===Business and industry=== According to the [[Boston Consulting Group]], in 2021, the economic value that biodiversity has on society comes down to four definable terms: regulation, culture, habitat, and provisioning. To sum these up in a relatively short manner, biodiversity helps maintain habitat and animal functions that provide considerable amounts of resources that benefit the economy.<ref name=":5">{{Cite web |date=2021-02-23 |title=The Biodiversity Crisis Is a Business Crisis |url=https://www.bcg.com/publications/2021/biodiversity-loss-business-implications-responses |access-date=2025-03-03 |website=BCG Global |language=en}}</ref> Biodiversity’s economic resources are worth at around $150 trillion annually which is roughly twice the world’s GDP. The loss of biodiversity is actually harming the GDP of the world by costing an estimated $5 trillion annually.<ref name=":5" /> Business supply chains rely heavily on ecosystems remaining relatively maintained and nurtured. A disruption to these supply chains would negatively impact many businesses that would end up costing them more than what they are gaining.<ref>{{Cite web |last=Singh |first=Geetika |date=2023-09-11 |title=Why Are Biodiversity and Business Related? |url=https://earth.org/biodiversitys-bottom-line-a-new-imperative-for-businesses/#:~:text=Business%20Risks%20and%20Opportunities,chains%20become%20a%20major%20concern. |access-date=2025-03-03 |website=Earth.Org |language=en}}</ref> ===Cultural and aesthetic value=== [[File:Eaglecreek-28July2006.jpg|thumb|upright|[[Eagle Creek (Multnomah County, Oregon)|Eagle Creek]], Oregon hiking]]Philosophically it could be argued that biodiversity has intrinsic aesthetic and spiritual value to [[Human|mankind]] ''in and of itself''. This idea can be used as a counterweight to the notion that [[tropical forest]]s and other ecological realms are only worthy of conservation because of the services they provide.<ref>{{cite journal |last1=Tribot |first1=Anne-Sophie |last2=Mouquet |first2=Nicolas |last3=Villéger |first3=Sébastien |last4=Raymond |first4=Michel |last5=Hoff |first5=Fabrice |last6=Boissery |first6=Pierre |last7=Holon |first7=Florian |last8=Deter |first8=Julie |title=Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs |journal=Scientific Reports |date=28 September 2016 |volume=6 |issue=1 |page=34229 |doi=10.1038/srep34229 |pmid=27677850 |pmc=5039688 |bibcode=2016NatSR...634229T }}</ref> Biodiversity also affords many non-material benefits including spiritual and aesthetic values, knowledge systems and education.<ref name="Hassan2005" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Biodiversity
(section)
Add topic