Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Autocorrelation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Autocorrelation of random vectors{{anchor|Matrix}}== The (potentially time-dependent) '''autocorrelation matrix''' (also called second moment) of a (potentially time-dependent) [[random vector]] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> is an <math>n \times n</math> matrix containing as elements the autocorrelations of all pairs of elements of the random vector <math>\mathbf{X}</math>. The autocorrelation matrix is used in various [[digital signal processing]] algorithms. For a [[random vector]] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> containing [[random element]]s whose [[expected value]] and [[variance]] exist, the '''autocorrelation matrix''' is defined by<ref name=Papoulis>Papoulis, Athanasius, ''Probability, Random variables and Stochastic processes'', McGraw-Hill, 1991</ref>{{rp|p.190}}<ref name=Gubner/>{{rp|p.334}} {{Equation box 1 |indent = : |title= |equation = <math>\operatorname{R}_{\mathbf{X}\mathbf{X}} \triangleq\ \operatorname{E} \left[ \mathbf{X} \mathbf{X}^{\rm T} \right] </math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where <math>{}^{\rm T}</math> denotes the [[transpose]]d matrix of dimensions <math>n \times n</math>. Written component-wise: <math display=block>\operatorname{R}_{\mathbf{X}\mathbf{X}} = \begin{bmatrix} \operatorname{E}[X_1 X_1] & \operatorname{E}[X_1 X_2] & \cdots & \operatorname{E}[X_1 X_n] \\ \\ \operatorname{E}[X_2 X_1] & \operatorname{E}[X_2 X_2] & \cdots & \operatorname{E}[X_2 X_n] \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \operatorname{E}[X_n X_1] & \operatorname{E}[X_n X_2] & \cdots & \operatorname{E}[X_n X_n] \\ \\ \end{bmatrix} </math> If <math>\mathbf{Z}</math> is a [[complex random vector]], the autocorrelation matrix is instead defined by <math display=block>\operatorname{R}_{\mathbf{Z}\mathbf{Z}} \triangleq\ \operatorname{E}[\mathbf{Z} \mathbf{Z}^{\rm H}] .</math> Here <math>{}^{\rm H}</math> denotes [[Hermitian transpose]]. For example, if <math>\mathbf{X} = \left( X_1,X_2,X_3 \right)^{\rm T}</math> is a random vector, then <math>\operatorname{R}_{\mathbf{X}\mathbf{X}}</math> is a <math>3 \times 3</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}[X_i X_j]</math>. ===Properties of the autocorrelation matrix=== * The autocorrelation matrix is a [[Hermitian matrix]] for complex random vectors and a [[symmetric matrix]] for real random vectors.<ref name=Papoulis />{{rp|p.190}} * The autocorrelation matrix is a [[positive semidefinite matrix]],<ref name=Papoulis />{{rp|p.190}} i.e. <math>\mathbf{a}^{\mathrm T} \operatorname{R}_{\mathbf{X}\mathbf{X}} \mathbf{a} \ge 0 \quad \text{for all } \mathbf{a} \in \mathbb{R}^n</math> for a real random vector, and respectively <math>\mathbf{a}^{\mathrm H} \operatorname{R}_{\mathbf{Z}\mathbf{Z}} \mathbf{a} \ge 0 \quad \text{for all } \mathbf{a} \in \mathbb{C}^n</math> in case of a complex random vector. * All eigenvalues of the autocorrelation matrix are real and non-negative. * The ''auto-covariance matrix'' is related to the autocorrelation matrix as follows:<!-- --><math display=block>\operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{E}[(\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{X} - \operatorname{E}[\mathbf{X}])^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{X}} - \operatorname{E}[\mathbf{X}] \operatorname{E}[\mathbf{X}]^{\rm T}</math><!-- -->Respectively for complex random vectors:<!-- --><math display=block>\operatorname{K}_{\mathbf{Z}\mathbf{Z}} = \operatorname{E}[(\mathbf{Z} - \operatorname{E}[\mathbf{Z}])(\mathbf{Z} - \operatorname{E}[\mathbf{Z}])^{\rm H}] = \operatorname{R}_{\mathbf{Z}\mathbf{Z}} - \operatorname{E}[\mathbf{Z}] \operatorname{E}[\mathbf{Z}]^{\rm H}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Autocorrelation
(section)
Add topic