Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Amphetamine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Physical performance==== <!-- Do not change this section header to "Physical"; there is already a "Physical" heading located under the "Side effects" section, so changing the heading here will affect section linking. --> Amphetamine is used by some athletes for its psychological and [[ergogenic aid|athletic performance-enhancing effects]], such as increased endurance and alertness;<ref name="Ergogenics">{{cite journal |vauthors=Liddle DG, Connor DJ | title = Nutritional supplements and ergogenic AIDS | journal =Primary Care: Clinics in Office Practice| volume = 40 | issue = 2 | pages = 487β505 |date=June 2013 | pmid = 23668655 | doi = 10.1016/j.pop.2013.02.009 |quote= Amphetamines and caffeine are stimulants that increase alertness, improve focus, decrease reaction time, and delay fatigue, allowing for an increased intensity and duration of training ...<br />Physiologic and performance effects<br />{{β’}}Amphetamines increase dopamine/norepinephrine release and inhibit their reuptake, leading to central nervous system (CNS) stimulation<br />{{β’}}Amphetamines seem to enhance athletic performance in anaerobic conditions 39 40<br />{{β’}}Improved reaction time<br />{{β’}}Increased muscle strength and delayed muscle fatigue<br />{{β’}}Increased acceleration<br />{{β’}}Increased alertness and attention to task}}</ref><ref name="Westfall">{{cite book |title=Goodman & Gilman's Pharmacological Basis of Therapeutics |vauthors=Westfall DP, Westfall TC |publisher=McGraw-Hill |year=2010 |isbn=9780071624428 |veditors=Brunton LL, Chabner BA, Knollmann BC |edition=12th |location=New York, US |section=Miscellaneous Sympathomimetic Agonists |quote=Dextrorotatory substitution on the Ξ±-carbon generally results in a more potent compound. d-Amphetamine is more potent than l-amphetamine in central but not peripheral activity. ... In eliciting CNS excitatory effects, the d-isomer (dextroamphetamine) is three to four times more potent than the l-isomer.}}</ref> however, non-medical amphetamine use is prohibited at sporting events that are regulated by collegiate, national, and international anti-doping agencies.<ref name="NCAA">{{cite web |date=January 2012 | vauthors = Bracken NM | title=National Study of Substance Use Trends Among NCAA College Student-Athletes | url=http://www.ncaapublications.com/productdownloads/SAHS09.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.ncaapublications.com/productdownloads/SAHS09.pdf |archive-date=9 October 2022 |url-status=live | website=NCAA Publications | publisher = National Collegiate Athletic Association | access-date=8 October 2013}}</ref><ref name="WADA & AD regulation">{{cite journal | author = Docherty JR | title = Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA) | journal =British Journal of Pharmacology| volume = 154 | issue = 3 | pages = 606β622 | date = June 2008 | pmid = 18500382 | pmc = 2439527 | doi = 10.1038/bjp.2008.124}}</ref> In healthy people at oral therapeutic doses, amphetamine has been shown to increase [[physical strength|muscle strength]],<!-- Refs:"Ergogenics" & "Ergogenics2" --> acceleration,<!-- Refs:"Ergogenics" & "Ergogenics2" --> athletic performance in [[anaerobic exercise|anaerobic conditions]],<!-- Refs:"Ergogenics" & "Ergogenics2" --> and [[endurance]] (i.e., it delays the onset of [[fatigue (medical)|fatigue]]),<!-- Refs:"Ergogenics" & "Ergogenics2" & "Roelands_2013" --> while improving [[mental chronometry|reaction time]].<ref name="Ergogenics" /><ref name="Ergogenics2" /><ref name="Roelands_2013" /> Amphetamine improves endurance and reaction time primarily through [[Reuptake inhibitor|reuptake inhibition]] and [[Releasing agent|release]] of dopamine in the central nervous system.<ref name="Ergogenics2" /><ref name="Roelands_2013">{{cite journal |vauthors=Roelands B, de Koning J, Foster C, Hettinga F, Meeusen R | title = Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing | journal =Sports Medicine| volume = 43 | issue = 5 | pages = 301β311 |date=May 2013 | pmid = 23456493 | doi = 10.1007/s40279-013-0030-4 | s2cid = 30392999 | quote = In high-ambient temperatures, dopaminergic manipulations clearly improve performance. The distribution of the power output reveals that after dopamine reuptake inhibition, subjects are able to maintain a higher power output compared with placebo. ... Dopaminergic drugs appear to override a safety switch and allow athletes to use a reserve capacity that is 'off-limits' in a normal (placebo) situation.}}</ref><ref name="Amph-DA reaction time">{{cite journal |vauthors=Parker KL, Lamichhane D, Caetano MS, Narayanan NS | title = Executive dysfunction in Parkinson's disease and timing deficits | journal =Frontiers in Integrative Neuroscience| volume = 7 | page = 75 | date = October 2013 | pmid = 24198770 | pmc = 3813949 | doi = 10.3389/fnint.2013.00075 | quote = Manipulations of dopaminergic signaling profoundly influence interval timing, leading to the hypothesis that dopamine influences internal pacemaker, or "clock," activity. For instance, amphetamine, which increases concentrations of dopamine at the synaptic cleft advances the start of responding during interval timing, whereas antagonists of D2 type dopamine receptors typically slow timing;... Depletion of dopamine in healthy volunteers impairs timing, while amphetamine releases synaptic dopamine and speeds up timing. | doi-access = free | title-link = doi }}</ref> Amphetamine and other dopaminergic drugs also increase power output at fixed [[rating of perceived exertion|levels of perceived exertion]] by overriding a "safety switch", allowing the [[Human body temperature|core temperature limit]] to increase in order to access a reserve capacity that is normally off-limits.<ref name="Roelands_2013" /><ref name="Central mechanisms affecting exertion">{{cite journal | vauthors = Rattray B, Argus C, Martin K, Northey J, Driller M | title = Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance? | journal =Frontiers in Physiology| volume = 6 | pages = 79 | date = March 2015 | pmid = 25852568 | pmc = 4362407 | doi = 10.3389/fphys.2015.00079 | quote = Aside from accounting for the reduced performance of mentally fatigued participants, this model rationalizes the reduced RPE and hence improved cycling time trial performance of athletes using a glucose mouthwash (Chambers et al., 2009) and the greater power output during a RPE matched cycling time trial following amphetamine ingestion (Swart, 2009). ... Dopamine stimulating drugs are known to enhance aspects of exercise performance (Roelands et al., 2008)| doi-access = free | title-link = doi }}</ref><ref name="Monoamine+drug effects on exercise - fatigue and heat">{{cite journal | vauthors = Roelands B, De Pauw K, Meeusen R | title = Neurophysiological effects of exercise in the heat | journal =Scandinavian Journal of Medicine & Science in Sports| volume = 25 |issue=Suppl 1 | pages = 65β78 | date = June 2015 | pmid = 25943657 | doi = 10.1111/sms.12350 | s2cid = 22782401 | quote = This indicates that subjects did not feel they were producing more power and consequently more heat. The authors concluded that the "safety switch" or the mechanisms existing in the body to prevent harmful effects are overridden by the drug administration (Roelands et al., 2008b). Taken together, these data indicate strong ergogenic effects of an increased DA concentration in the brain, without any change in the perception of effort.| doi-access = free | title-link = doi }}</ref> At therapeutic doses, the adverse effects of amphetamine do not impede athletic performance;<ref name="Ergogenics" /><ref name="Ergogenics2" /> however, at much higher doses, amphetamine can induce effects that severely impair performance, such as [[rhabdomyolysis|rapid muscle breakdown]] and [[hyperthermia|elevated body temperature]].<ref name="FDA">{{cite web | title=Adderall XR- dextroamphetamine sulfate, dextroamphetamine saccharate, amphetamine sulfate and amphetamine aspartate capsule, extended release | website=DailyMed | publisher = Shire US Inc. | date=17 July 2019 | url=https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=aff45863-ffe1-4d4f-8acf-c7081512a6c0 | access-date=22 December 2019}}</ref><ref name="Ergogenics2">{{cite journal |author =Parr JW |title=Attention-deficit hyperactivity disorder and the athlete: new advances and understanding |journal=Clinics in Sports Medicine|volume=30 |issue=3 |pages=591β610 |date=July 2011 |pmid=21658550 |doi=10.1016/j.csm.2011.03.007 |quote=In 1980, Chandler and Blair<sup>47</sup> showed significant increases in knee extension strength, acceleration, anaerobic capacity, time to exhaustion during exercise, pre-exercise and maximum heart rates, and time to exhaustion during maximal oxygen consumption (VO2 max) testing after administration of 15 mg of dextroamphetamine versus placebo. Most of the information to answer this question has been obtained in the past decade through studies of fatigue rather than an attempt to systematically investigate the effect of ADHD drugs on exercise.}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Amphetamine
(section)
Add topic