Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Algebraically closed field
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relatively prime polynomials and roots=== For any field ''F'', if two polynomials {{math|''p''(''x''), ''q''(''x'') β ''F''[''x'']}} are [[coprime|relatively prime]] then they do not have a common root, for if {{math|''a'' β ''F''}} was a common root, then ''p''(''x'') and ''q''(''x'') would both be multiples of {{math|''x'' − ''a''}} and therefore they would not be relatively prime. The fields for which the reverse implication holds (that is, the fields such that whenever two polynomials have no common root then they are relatively prime) are precisely the algebraically closed fields. If the field ''F'' is algebraically closed, let ''p''(''x'') and ''q''(''x'') be two polynomials which are not relatively prime and let ''r''(''x'') be their [[greatest common divisor]]. Then, since ''r''(''x'') is not constant, it will have some root ''a'', which will be then a common root of ''p''(''x'') and ''q''(''x''). If ''F'' is not algebraically closed, let ''p''(''x'') be a polynomial whose degree is at least 1 without roots. Then ''p''(''x'') and ''p''(''x'') are not relatively prime, but they have no common roots (since none of them has roots).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Algebraically closed field
(section)
Add topic