Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
3D rotation group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Lie algebra== Associated with every [[Lie group]] is its [[Lie algebra]], a linear space of the same dimension as the Lie group, closed under a bilinear alternating product called the [[Lie bracket]]. The Lie algebra of {{math|SO(3)}} is denoted by <math>\mathfrak{so}(3)</math> and consists of all [[skew-symmetric matrix|skew-symmetric]] {{math|3 × 3}} matrices.<ref>{{harvnb|Hall|2015}} Proposition 3.24</ref> This may be seen by differentiating the [[orthogonal matrix|orthogonality condition]], {{math|1=''A''<sup>T</sup>''A'' = ''I'', ''A'' ∈ SO(3)}}.<ref group="nb">For an alternative derivation of <math>\mathfrak{so}(3)</math>, see [[Classical group]].</ref> The Lie bracket of two elements of <math>\mathfrak{so}(3)</math> is, as for the Lie algebra of every matrix group, given by the matrix [[commutator]], {{math|1=[''A''<sub>1</sub>, ''A''<sub>2</sub>] = ''A''<sub>1</sub>''A''<sub>2</sub> − ''A''<sub>2</sub>''A''<sub>1</sub>}}, which is again a skew-symmetric matrix. The Lie algebra bracket captures the essence of the Lie group product in a sense made precise by the [[Baker–Campbell–Hausdorff formula]]. The elements of <math>\mathfrak{so}(3)</math> are the "infinitesimal generators" of rotations, i.e., they are the elements of the [[tangent space]] of the manifold SO(3) at the identity element. If <math>R(\phi, \boldsymbol{n})</math> denotes a counterclockwise rotation with angle φ about the axis specified by the unit vector <math>\boldsymbol{n},</math> then :<math>\forall \boldsymbol{u} \in \R^3: \qquad \left. \frac{\operatorname{d}}{\operatorname{d}\phi} \right|_{\phi=0} R(\phi,\boldsymbol{n}) \boldsymbol{u} = \boldsymbol{n} \times \boldsymbol{u}.</math> This can be used to show that the Lie algebra <math>\mathfrak{so}(3)</math> (with commutator) is isomorphic to the Lie algebra <math>\R^3</math> (with [[cross product]]). Under this isomorphism, an [[Axis–angle representation#Rotation vector|Euler vector]] <math>\boldsymbol{\omega}\in\R^3</math> corresponds to the linear map <math>\widetilde{\boldsymbol{\omega}}</math> defined by <math>\widetilde{\boldsymbol{\omega}}(\boldsymbol{u}) = \boldsymbol{\omega}\times\boldsymbol{u}.</math> In more detail, most often a suitable basis for <math>\mathfrak{so}(3)</math> as a {{nowrap|{{math|3}}-dimensional}} vector space is :<math> \boldsymbol{L}_x = \begin{bmatrix}0&0&0\\0&0&-1\\0&1&0\end{bmatrix}, \quad \boldsymbol{L}_y = \begin{bmatrix}0&0&1\\0&0&0\\-1&0&0\end{bmatrix}, \quad \boldsymbol{L}_z = \begin{bmatrix}0&-1&0\\1&0&0\\0&0&0\end{bmatrix}. </math> The [[commutation relation]]s of these basis elements are, :<math> [\boldsymbol{L}_x, \boldsymbol{L}_y] = \boldsymbol{L}_z, \quad [\boldsymbol{L}_z, \boldsymbol{L}_x] = \boldsymbol{L}_y, \quad [\boldsymbol{L}_y, \boldsymbol{L}_z] = \boldsymbol{L}_x </math> which agree with the relations of the three [[standard basis|standard unit vectors]] of <math>\R^3</math> under the cross product. As announced above, one can identify any matrix in this Lie algebra with an Euler vector <math>\boldsymbol{\omega} = (x,y,z) \in \R^3,</math><ref>{{harvnb|Rossmann|2002}}</ref> :<math>\widehat{\boldsymbol{\omega}} =\boldsymbol{\omega}\cdot \boldsymbol{L} = x \boldsymbol{L}_x + y \boldsymbol{L}_y + z \boldsymbol{L}_z =\begin{bmatrix}0&-z&y\\z&0&-x\\-y&x&0\end{bmatrix} \in \mathfrak{so}(3).</math> This identification is sometimes called the '''hat-map'''.<ref name="Engø 2001">{{harvnb|Engø|2001}}</ref> Under this identification, the <math>\mathfrak{so}(3)</math> bracket corresponds in <math>\R^3</math> to the [[cross product]], :<math>\left [\widehat{\boldsymbol{u}},\widehat{\boldsymbol{v}} \right ] = \widehat{\boldsymbol{u} \times \boldsymbol{v}}.</math> The matrix identified with a vector <math>\boldsymbol{u}</math> has the property that :<math>\widehat{\boldsymbol{u}}\boldsymbol{v} = \boldsymbol{u} \times \boldsymbol{v},</math> where the left-hand side we have ordinary matrix multiplication. This implies <math>\boldsymbol{u}</math> is in the [[null space]] of the skew-symmetric matrix with which it is identified, because <math>\boldsymbol{u} \times \boldsymbol{u} = \boldsymbol{0}.</math> ===A note on Lie algebras=== {{Main|Angular momentum operator}} {{see also|Representation theory of SU(2)|Jordan map}} In [[Lie algebra representation]]s, the group SO(3) is compact and simple of rank 1, and so it has a single independent [[Casimir element]], a quadratic invariant function of the three generators which commutes with all of them. The Killing form for the rotation group is just the [[Kronecker delta]], and so this Casimir invariant is simply the sum of the squares of the generators, <math>\boldsymbol{J}_x, \boldsymbol{J}_y, \boldsymbol{J}_z,</math> of the algebra :<math> [\boldsymbol{J}_x, \boldsymbol{J}_y] = \boldsymbol{J}_z, \quad [\boldsymbol{J}_z, \boldsymbol{J}_x] = \boldsymbol{J}_y, \quad [\boldsymbol{J}_y, \boldsymbol{J}_z] = \boldsymbol{J}_x. </math> That is, the Casimir invariant is given by :<math>\boldsymbol{J}^2\equiv \boldsymbol{J}\cdot \boldsymbol{J} =\boldsymbol{J}_x^2+\boldsymbol{J}_y^2+\boldsymbol{J}_z^2 \propto \boldsymbol{I}.</math> For unitary irreducible [[Lie algebra representation|representations]] {{mvar|D<sup>j</sup>}}, the eigenvalues of this invariant are real and discrete, and characterize each representation, which is finite dimensional, of dimensionality <math>2j+1</math>. That is, the eigenvalues of this Casimir operator are :<math>\boldsymbol{J}^2=- j(j+1) \boldsymbol{I}_{2j+1},</math> where {{mvar|j}} is integer or half-integer, and referred to as the [[Spin (physics)|spin]] or [[angular momentum]]. So, the 3 × 3 generators '''''L''''' displayed above act on the triplet (spin 1) representation, while the 2 × 2 generators below, '''''t''''', act on the [[Spinor|doublet]] ([[spin-1/2]]) representation. By taking [[Kronecker product]]s of {{math|''D''<sup>1/2</sup>}} with itself repeatedly, one may construct all higher irreducible representations {{mvar|D<sup>j</sup>}}. That is, the resulting generators for higher spin systems in three spatial dimensions, for arbitrarily large {{mvar|j}}, can be calculated using these [[spin operator]]s and [[ladder operator]]s. For every unitary irreducible representations {{mvar|D<sup>j</sup>}} there is an equivalent one, {{math|''D''<sup>−''j''−1</sup>}}. All infinite-dimensional irreducible representations must be non-unitary, since the group is compact. In [[quantum mechanics]], the Casimir invariant is the "angular-momentum-squared" operator; integer values of spin {{mvar|j}} characterize [[boson|bosonic representation]]s, while half-integer values [[fermion|fermionic representation]]s. The [[Skew-Hermitian matrix|antihermitian]] matrices used above are utilized as [[spin operator]]s, after they are multiplied by {{mvar|i}}, so they are now [[Hermitian matrix|hermitian]] (like the Pauli matrices). Thus, in this language, :<math> [\boldsymbol{J}_x, \boldsymbol{J}_y] = i\boldsymbol{J}_z, \quad [\boldsymbol{J}_z, \boldsymbol{J}_x] = i\boldsymbol{J}_y, \quad [\boldsymbol{J}_y, \boldsymbol{J}_z] = i\boldsymbol{J}_x. </math> and hence :<math>\boldsymbol{J}^2= j(j+1) \boldsymbol{I}_{2j+1}.</math> Explicit expressions for these {{mvar|D<sup>j</sup>}} are, :<math>\begin{align} \left (\boldsymbol{J}_z^{(j)}\right )_{ba} &= (j+1-a)\delta_{b,a}\\ \left (\boldsymbol{J}_x^{(j)}\right )_{ba} &=\frac{1}{2} \left (\delta_{b,a+1}+\delta_{b+1,a} \right ) \sqrt{(j+1)(a+b-1)-ab}\\ \left (\boldsymbol{J}_y^{(j)}\right )_{ba} &=\frac{1}{2i} \left (\delta_{b,a+1}-\delta_{b+1,a} \right ) \sqrt{(j+1)(a+b-1)-ab}\\ \end{align}</math> where {{mvar|j}} is arbitrary and <math>1 \le a, b \le 2j+1</math>. For example, the resulting spin matrices for spin 1 (<math>j = 1</math>) are :<math>\begin{align} \boldsymbol{J}_x &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 &1 &0\\ 1 &0 &1\\ 0 &1 &0 \end{pmatrix} \\ \boldsymbol{J}_y &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 &-i &0\\ i &0 &-i\\ 0 &i &0 \end{pmatrix} \\ \boldsymbol{J}_z &= \begin{pmatrix} 1 &0 &0\\ 0 &0 &0\\ 0 &0 &-1 \end{pmatrix} \end{align}</math> Note, however, how these are in an equivalent, but different basis, the [[Spherical basis#Change of basis matrix|spherical basis]], than the above {{mvar|i}}'''''L''''' in the Cartesian basis.<ref group="nb">Specifically, <math>\boldsymbol{U} \boldsymbol{J}_{\alpha}\boldsymbol{U}^\dagger=i\boldsymbol{L}_\alpha</math> for : <math>\boldsymbol{U}= \left( \begin{array}{ccc} -\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & i & 0 \\ \end{array} \right).</math></ref> For higher spins, such as spin {{sfrac|3|2}} (<math>j=\tfrac{3}{2}</math>): :<math>\begin{align} \boldsymbol{J}_x &= \frac{1}{2} \begin{pmatrix} 0 &\sqrt{3} &0 &0\\ \sqrt{3} &0 &2 &0\\ 0 &2 &0 &\sqrt{3}\\ 0 &0 &\sqrt{3} &0 \end{pmatrix} \\ \boldsymbol{J}_y &= \frac{1}{2} \begin{pmatrix} 0 &-i\sqrt{3} &0 &0\\ i\sqrt{3} &0 &-2i &0\\ 0 &2i &0 &-i\sqrt{3}\\ 0 &0 &i\sqrt{3} &0 \end{pmatrix} \\ \boldsymbol{J}_z &=\frac{1}{2} \begin{pmatrix} 3 &0 &0 &0\\ 0 &1 &0 &0\\ 0 &0 &-1 &0\\ 0 &0 &0 &-3 \end{pmatrix}. \end{align}</math> For spin {{sfrac|5|2}} (<math>j = \tfrac{5}{2}</math>), :<math>\begin{align} \boldsymbol{J}_x &= \frac{1}{2} \begin{pmatrix} 0 &\sqrt{5} &0 &0 &0 &0 \\ \sqrt{5} &0 &2\sqrt{2} &0 &0 &0 \\ 0 &2\sqrt{2} &0 &3 &0 &0 \\ 0 &0 &3 &0 &2\sqrt{2} &0 \\ 0 &0 &0 &2\sqrt{2} &0 &\sqrt{5} \\ 0 &0 &0 &0 &\sqrt{5} &0 \end{pmatrix} \\ \boldsymbol{J}_y &= \frac{1}{2} \begin{pmatrix} 0 &-i\sqrt{5} &0 &0 &0 &0 \\ i\sqrt{5} &0 &-2i\sqrt{2} &0 &0 &0 \\ 0 &2i\sqrt{2} &0 &-3i &0 &0 \\ 0 &0 &3i &0 &-2i\sqrt{2} &0 \\ 0 &0 &0 &2i\sqrt{2} &0 &-i\sqrt{5} \\ 0 &0 &0 &0 &i\sqrt{5} &0 \end{pmatrix} \\ \boldsymbol{J}_z &= \frac{1}{2} \begin{pmatrix} 5 &0 &0 &0 &0 &0 \\ 0 &3 &0 &0 &0 &0 \\ 0 &0 &1 &0 &0 &0 \\ 0 &0 &0 &-1 &0 &0 \\ 0 &0 &0 &0 &-3 &0 \\ 0 &0 &0 &0 &0 &-5 \end{pmatrix}. \end{align}</math> {{main|Spin (physics)#Higher spins}} === Isomorphism with 𝖘𝖚(2) === The Lie algebras <math>\mathfrak{so}(3)</math> and <math>\mathfrak{su}(2)</math> are isomorphic. One basis for <math>\mathfrak{su}(2)</math> is given by<ref>{{harvnb|Hall|2015}} Example 3.27</ref> :<math>\boldsymbol{t}_1 = \frac{1}{2}\begin{bmatrix}0 & -i\\ -i & 0\end{bmatrix}, \quad \boldsymbol{t}_2 = \frac{1}{2} \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}, \quad \boldsymbol{t}_3 = \frac{1}{2}\begin{bmatrix}-i & 0\\ 0 & i\end{bmatrix}.</math> These are related to the [[Pauli matrix|Pauli matrices]] by :<math>\boldsymbol{t}_i \longleftrightarrow \frac{1}{2i} \sigma_i.</math> The Pauli matrices abide by the physicists' convention for Lie algebras. In that convention, Lie algebra elements are multiplied by {{mvar|i}}, the exponential map (below) is defined with an extra factor of {{mvar|i}} in the exponent and the [[structure constant]]s remain the same, but the ''definition'' of them acquires a factor of {{mvar|i}}. Likewise, commutation relations acquire a factor of {{mvar|i}}. The commutation relations for the <math>\boldsymbol{t}_i</math> are :<math>[\boldsymbol{t}_i, \boldsymbol{t}_j] = \varepsilon_{ijk}\boldsymbol{t}_k,</math> where {{math|[[Levi-Civita symbol|''ε''<sub>''ijk''</sub>]]}} is the totally anti-symmetric symbol with {{math|1=''ε''<sub>123</sub> = 1}}. The isomorphism between <math>\mathfrak{so}(3)</math> and <math>\mathfrak{su}(2)</math> can be set up in several ways. For later convenience, <math>\mathfrak{so}(3)</math> and <math>\mathfrak{su}(2)</math> are identified by mapping :<math>\boldsymbol{L}_x \longleftrightarrow \boldsymbol{t}_1, \quad \boldsymbol{L}_y \longleftrightarrow \boldsymbol{t}_2, \quad \boldsymbol{L}_z \longleftrightarrow \boldsymbol{t}_3,</math> and extending by linearity.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
3D rotation group
(section)
Add topic