Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Universal property
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Motivation == Before giving a formal definition of universal properties, we offer some motivation for studying such constructions. * The concrete details of a given construction may be messy, but if the construction satisfies a universal property, one can forget all those details: all there is to know about the construction is already contained in the universal property. Proofs often become short and elegant if the universal property is used rather than the concrete details. For example, the [[tensor algebra]] of a [[vector space]] is slightly complicated to construct, but much easier to deal with by its universal property. * Universal properties define objects uniquely up to a unique [[isomorphism]].<ref>Jacobson (2009), Proposition 1.6, p. 44.</ref> Therefore, one strategy to prove that two objects are isomorphic is to show that they satisfy the same universal property. * Universal constructions are functorial in nature: if one can carry out the construction for every object in a category ''C'' then one obtains a [[functor]] on ''C''. Furthermore, this functor is a [[adjoint functors|right or left adjoint]] to the functor ''U'' used in the definition of the universal property.<ref>See for example, Polcino & Sehgal (2002), p. 133. exercise 1, about the universal property of [[group ring]]s.</ref> * Universal properties occur everywhere in mathematics. By understanding their abstract properties, one obtains information about all these constructions and can avoid repeating the same analysis for each individual instance.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Universal property
(section)
Add topic