Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Unconventional superconductor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == The superconducting properties of CeCu<sub>2</sub>Si<sub>2</sub>, a type of [[heavy fermion material]], were reported in 1979 by [[Frank Steglich]].<ref>{{cite journal |doi=10.1103/PhysRevLett.43.1892|title=Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2 |year=1979 |last1=Steglich |first1=F. |first2=J. |journal=Physical Review Letters |volume=43 |pages=1892–1896 |last2=Aarts |last3=Bredl |first3=C.D. |last4=Lieke |first4=W. |last5=Meschede |first5=D. |last6=Franz |first6=W. |last7=Schäfer |first7=H. |bibcode=1979PhRvL..43.1892S |issue=25 |hdl=1887/81461 |s2cid=123497750 |hdl-access=free }}</ref> For a long time it was believed that CeCu<sub>2</sub>Si<sub>2</sub> was a singlet d-wave superconductor, but since the mid-2010s, this notion has been strongly contested.<ref>{{Cite journal |last1=Kittaka|first1=Shunichiro|last2=Aoki|first2=Yuya|last3=Shimura|first3=Yasuyuki|last4=Sakakibara|first4=Toshiro|last5=Seiro|first5=Silvia|last6=Geibel|first6=Christoph|last7=Steglich|first7=Frank|last8=Ikeda|first8=Hiroaki|last9=Machida|first9=Kazushige|date=2014-02-12|title=Multiband Superconductivity with Unexpected Deficiency of Nodal Quasiparticles in CeCu<sub>2</sub>Si<sub>2</sub>|journal=Physical Review Letters|volume=112|issue=6|pages=067002|doi=10.1103/PhysRevLett.112.067002|bibcode=2014PhRvL.112f7002K|pmid=24580704|arxiv=1307.3499|s2cid=13367098 }}</ref> In the early eighties, many more unconventional, [[heavy fermion]] [[Superconductivity|superconductors]] were discovered, including UBe<sub>13</sub>,<ref>{{cite journal |doi=10.1103/PhysRevLett.50.1595|title=UBe_{13}: An Unconventional Actinide Superconductor|year=1983|last1=Ott|first1=H. R.|last2=Rudigier|first2=H.|last3=Fisk|first3=Z.|last4=Smith|first4=J.|journal=Physical Review Letters|volume=50|issue=20|pages=1595–1598|bibcode=1983PhRvL..50.1595O|url=https://escholarship.org/uc/item/18w6w653 }}</ref> [[UPt3|UPt<sub>3</sub>]]<ref>{{cite journal|doi=10.1103/PhysRevLett.52.679|title=Possibility of Coexistence of Bulk Superconductivity and Spin Fluctuations in UPt<sub>3</sub>|year=1984|last1=Stewart|first1=G. R.|first2=Z.|first3=J. O.|first4=J. L.|journal=Physical Review Letters|volume=52|pages=679–682|last2=Fisk|last3=Willis|last4=Smith|bibcode=1984PhRvL..52..679S|issue=8|s2cid=73591098 |url=http://www.escholarship.org/uc/item/6px8s7q3}}</ref> and URu<sub>2</sub>Si<sub>2</sub>.<ref>{{cite journal|doi=10.1103/PhysRevLett.55.2727|pmid=10032222|title=Superconducting and Magnetic Transitions in the Heavy-Fermion System URu_{2}Si_{2}|year=1985|last1=Palstra|first1=T. T. M.|last2=Menovsky|first2=A. A.|last3=Berg|first3=J. van den|last4=Dirkmaat|first4=A. J.|last5=Kes|first5=P. H.|last6=Nieuwenhuys|first6=G. J.|last7=Mydosh|first7=J. A.|journal=Physical Review Letters|volume=55|issue=24|pages=2727–2730|bibcode=1985PhRvL..55.2727P|url=https://www.rug.nl/research/portal/en/publications/superconducting-and-magnetic-transitions-in-the-heavyfermion-system-uru2si2(ade9b7b6-f4eb-4973-bfbe-7837626183c0).html}}</ref> In each of these materials, the anisotropic nature of the pairing was implicated by the power-law dependence of the [[nuclear magnetic resonance]] (NMR) relaxation rate and specific heat capacity on temperature. The presence of nodes in the superconducting gap of UPt<sub>3</sub> was confirmed in 1986 from the polarization dependence of the ultrasound attenuation.<ref>{{cite journal|doi=10.1103/PhysRevLett.56.1078|title=Anisotropy of Transverse Sound in the Heavy-Fermion Superconductor UPt<sub>3</sub> |year=1986|first4=D.|last1=Shivaram|last4=Hinks|first1=B. S.|first2=Y. H.|first3=T.F.|journal=Physical Review Letters|volume=56|pages=1078–1081|last2=Jeong|last3=Rosenbaum|pmid=10032562|bibcode=1986PhRvL..56.1078S|issue=10|url=https://authors.library.caltech.edu/47038/1/PhysRevLett.56.1078.pdf}}</ref> The first unconventional triplet superconductor, organic material (TMTSF)<sub>2</sub>PF<sub>6</sub>, was discovered by [[Denis Jerome]], [[Klaus Bechgaard]] and coworkers in 1980 (TMTSF = Tetramethyltetraselenafulvalenium, see [[Fulvalene]]).<ref>{{cite journal |doi=10.1051/jphyslet:0198000410409500 |title=Superconductivity in a synthetic organic conductor (TMTSF)2PF 6 |year=1980 |last1=Jérome |first1=D. |first2=A. |first3=M. |first4=K. |journal=Journal de Physique Lettres |volume=41 |pages=95 |last2=Mazaud |last3=Ribault |last4=Bechgaard |issue=4 |url=https://hal.archives-ouvertes.fr/jpa-00231730/file/ajp-jphyslet_1980_41_4_95_0.pdf }}</ref> Experimental works by [[Paul Chaikin]]'s and Michael Naughton's groups as well as theoretical analysis of their data by [[Andrei Lebed]] have firmly confirmed unconventional nature of superconducting pairing in (TMTSF)<sub>2</sub>X (X=PF<sub>6</sub>, ClO<sub>4</sub>, etc.) organic materials.<ref>{{cite journal |doi=10.1103/PhysRevLett.46.852|title=Zero-Pressure Organic Superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [(TMTSF)2ClO4]|year=1981|last1=Bechgaard|first1=Klaus|first2=Claus S.|journal=Physical Review Letters|volume=46|pages=852|last2=Carneiro|last3=Olsen|first3=Malte|last4=Rasmussen|first4=Finn|last5=Jacobsen|first5=Claus|bibcode=1981PhRvL..46..852B|issue=13|url=http://orbit.dtu.dk/files/4927636/Bech.pdf}}</ref> High-temperature singlet d-wave superconductivity was discovered by [[J.G. Bednorz]] and [[Karl Alexander Müller|K.A. Müller]] in 1986, who also discovered that the [[lanthanum]]-based [[cuprate superconductor|cuprate]] [[perovskite]] material LaBaCuO<sub>4</sub> develops superconductivity at a critical temperature (''T''<sub>c</sub>) of approximately 35 [[kelvin|K]] (-238 degrees [[Celsius]]). This was well above the highest critical temperature known at the time (''T''<sub>c</sub> = 23 K), and thus the new family of materials was called [[High-temperature superconductivity|high-temperature superconductors]]. Bednorz and Müller received the [[Nobel Prize in Physics]] for this discovery in 1987. Since then, many other [[High-temperature superconductivity|high-temperature superconductors]] have been synthesized. LSCO (La<sub>2−''x''</sub>Sr<sub>''x''</sub>CuO<sub>4</sub>) was discovered the same year (1986). Soon after, in January 1987, [[yttrium barium copper oxide]] (YBCO) was discovered to have a ''T''<sub>c</sub> of 90 K, the first material to achieve superconductivity above the boiling point of [[liquid nitrogen]] (77 K).<ref>{{cite journal |title=Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure |author=K. M. Wu |journal=Phys. Rev. Lett. |volume=58 |issue=9 |year=1987 |pages=908–910 |doi=10.1103/PhysRevLett.58.908|pmid=10035069 |bibcode=1987PhRvL..58..908W |display-authors=etal |doi-access=free }}</ref> This was highly significant from the point of view of the [[technological applications of superconductivity]] because liquid nitrogen is far less expensive than [[liquid helium]], which is required to cool [[conventional superconductor]]s down to their critical temperature. In 1988 [[bismuth strontium calcium copper oxide]] (BSCCO) with ''T''<sub>c</sub> up to 107 K,<ref>{{cite journal|title = A New High-''T''<sub>c</sub> Oxide Superconductor without a Rare Earth Element|author1=H. Maeda |author2=Y. Tanaka |author3=M. Fukutumi |author4=T. Asano |name-list-style=amp |journal=Jpn. J. Appl. Phys. |volume=27 |issue=2 |pages=L209–L210 |year=1988 |doi=10.1143/JJAP.27.L209 |bibcode=1988JaJAP..27L.209M |doi-access=free }}</ref> and [[thallium barium calcium copper oxide]] (TBCCO) (T=thallium) with ''T''<sub>c</sub> of 125 K were discovered. The current record critical temperature is about ''T''<sub>c</sub> = 133 K (−140 °C) at standard pressure, and somewhat higher critical temperatures can be achieved at high pressure. Nevertheless, at present it is considered unlikely that cuprate perovskite materials will achieve room-temperature superconductivity. On the other hand, other unconventional superconductors have been discovered. These include some that do not superconduct at high temperatures, such as [[strontium ruthenate|strontium ruthenate Sr<sub>2</sub>RuO<sub>4</sub>]], but that, like high-temperature superconductors, are unconventional in other ways. (For example, the origin of the attractive force leading to the formation of [[Cooper pair]]s may be different from the one postulated in [[BCS theory]].) In addition to this, superconductors that have unusually high values of ''T''<sub>c</sub> but that are not cuprate perovskites have been discovered. Some of them may be extreme examples of [[conventional superconductor]]s (this is suspected of [[magnesium diboride]], MgB<sub>2</sub>, with ''T''<sub>c</sub> = 39 K). Others could display more unconventional features. In 2008 a new class that does not include copper (layered [[oxypnictide]] superconductors), for example LaOFeAs, was discovered.<ref name = "Superconductivity">{{cite journal |title = Superconductivity at 43K in an iron-based layered compound LaO<sub>1−''x''</sub>F<sub>''x''</sub>FeAs | author1 = Hiroki Takahashi | author2 = Kazumi Igawa | author3 = Kazunobu Arii | author4 = Yoichi Kamihara | author5 = Masahiro Hirano|author6= Hideo Hosono | journal = Nature|volume = 453|pages = 376–378|year = 2008|doi = 10.1038/nature06972|pmid = 18432191|issue = 7193|bibcode=2008Natur.453..376T|s2cid = 498756}}</ref><ref>{{cite web |url=http://www.sciam.com/article.cfm?id=iron-exposed-as-high-temp-superconductor |title=A New Iron Age: New class of superconductor may help pin down mysterious physics |first=Charles Q. |last=Choi |date=June 1, 2008 |work=Scientific American |access-date=2009-10-29}}</ref><ref>{{Cite web |url=https://www.sciencedaily.com/releases/2008/05/080528140242.htm |title=New High-Temperature Superconductors Are Iron-based With Unusual Magnetic Properties |website=ScienceDaily |date=June 1, 2008 |author=National Institute of Standards and Technology}}</ref> An oxypnictide of [[samarium]] seemed to have a ''T''<sub>c</sub> of about 43 K, which was higher than predicted by BCS theory.<ref>{{cite journal | last1=Chen | first1=X. H. | last2=Wu | first2=T. | last3=Wu | first3=G. | last4=Liu | first4=R. H. | last5=Chen | first5=H. | last6=Fang | first6=D. F. | title=Superconductivity at 43 K in SmFeAsO<sub>1−x</sub>F<sub>X</sub> | journal=Nature | year=2008 | volume=453 | issue=7196 | pages=761–762 | doi=10.1038/nature07045 | pmid=18500328 | arxiv=0803.3603 | bibcode=2008Natur.453..761C | s2cid=205213713 }}</ref> Tests at up to 45 [[tesla (unit)|T]]<ref>[http://www.planetanalog.com/news/showArticle.jhtml?articleID=208401297 High-temp superconductors pave way for 'supermagnets']{{Dead link|date=July 2018 |bot=InternetArchiveBot |fix-attempted=no }}</ref><ref>{{cite journal |doi=10.1038/nature07058|title=Very High Field Two-band Superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields|year=2008|last1=Hunte|first1=F.|first2=J.|first3=A.|first4=D. C.|first5=R.|first6=A. S.|first7=M. A.|first8=B. C.|first9=D. K.|last10=Mandrus|first10=D.|journal=Nature|volume=453|pages=903–5|pmid=18509332|last2=Jaroszynski|last3=Gurevich|last4=Larbalestier|last5=Jin|last6=Sefat|last7=McGuire|last8=Sales|last9=Christen|issue=7197|bibcode = 2008Natur.453..903H |display-authors=8|arxiv=0804.0485|s2cid=115211939 }}</ref> suggested the upper critical field of LaFeAsO<sub>0.89</sub>F<sub>0.11</sub> to be around 64 T. Some other [[iron-based superconductor]]s do not contain oxygen. {{As of|2009}}, the highest-temperature superconductor (at ambient pressure) is mercury barium calcium copper oxide (HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>''x''</sub>), at 138 K and is held by a cuprate-perovskite material,<ref>{{cite journal |author1 = P. Dai|author2 = B. C. Chakoumakos|author3 = G. F. Sun|author4 = K. W. Wong |author5 = Y. Xin |author6 = D. F. Lu|title = Synthesis and neutron powder diffraction study of the superconductor HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8+δ</sub> by Tl substitution|journal = Physica C|volume = 243|year = 1995|pages = 201–206|doi = 10.1016/0921-4534(94)02461-8|issue = 3–4|bibcode=1995PhyC..243..201D }}</ref> possibly 164 K under high pressure.<ref>{{cite journal |author1=L. Gao |author2=Y. Y. Xue |author3=F. Chen |author4=Q. Xiong |author5=R. L. Meng |author6=D. Ramirez |author7=C. W. Chu |author8=J. H. Eggert |author9=H. K. Mao |name-list-style=amp |title = Superconductivity up to 164 K in HgBa<sub>2</sub>Ca<sub>m-1</sub>Cu<sub>m</sub>O<sub>2m+2+δ</sub> (m=1, 2, and 3) under quasihydrostatic pressures|journal = Phys. Rev. B|volume = 50|year = 1994|pages = 4260–4263|doi = 10.1103/PhysRevB.50.4260|issue = 6|pmid=9976724 |bibcode=1994PhRvB..50.4260G }}</ref> Other unconventional superconductors not based on cuprate structure have too been found.<ref name = "Superconductivity" /> Some have unusually high values of the [[critical temperature]], ''T''<sub>c</sub>, and hence they are sometimes also called high-temperature superconductors. === Graphene === In 2017, [[Scanning tunneling microscope|scanning tunneling microscopy]] and spectroscopy experiments on [[graphene]] proximitized to the electron-doped (non-chiral) ''d''-wave superconductor Pr<sub>2−''x''</sub>Ce<sub>''x''</sub>CuO<sub>4</sub> (PCCO) revealed evidence for an unconventional superconducting density of states induced in graphene.<ref>{{Cite journal |last1=Di Bernardo|first1=A.|last2=Millo|first2=O.|last3=Barbone|first3=M.|last4=Alpern|first4=H.|last5=Kalcheim|first5=Y.|last6=Sassi|first6=U.|last7=Ott|first7=A. K.|last8=Fazio|first8=D. De|last9=Yoon|first9=D.|date=2017-01-19|title=p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor|journal=Nature Communications|language=en|volume=8|doi=10.1038/ncomms14024|issn=2041-1723|page=14024|arxiv=1702.01572|bibcode=2017NatCo...814024D|pmid=28102222|pmc=5253682 }}</ref> Publications in March 2018 provided evidence for unconventional [[Bilayer graphene#Superconductivity in twisted bilayer graphene|superconducting properties of a graphene bilayer]] where [[Twistronics|one layer was offset]] by a "magic angle" of 1.1° relative to the other.<ref>{{Cite journal |last=Gibney|first=Elizabeth|author-link=Elizabeth Gibney|date=5 March 2018|title=Surprise graphene discovery could unlock secrets of superconductivity|department=News|journal=Nature|volume=555|issue=7695|pages=151–2|quote=Physicists now report that arranging two layers of atom-thick graphene so that the pattern of their carbon atoms is offset by an angle of 1.1º makes the material a superconductor.|bibcode=2018Natur.555..151G|doi=10.1038/d41586-018-02773-w|pmid=29517044|doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Unconventional superconductor
(section)
Add topic