Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ternary numeral system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Comparison to other bases == Representations of [[integer number]]s in ternary do not get uncomfortably lengthy as quickly as in [[binary numeral system|binary]]. For example, [[decimal]] [[365 (number)|365]]{{sub|(10)}} or [[senary]] {{gaps|1|405}}{{sub|(6)}} corresponds to binary {{gaps|1|0110|1101}}{{sub|(2)}} (nine [[bit]]s) and to ternary {{gaps|111|112}}{{sub|(3)}} (six digits). However, they are still far less compact than the corresponding representations in bases such as [[decimal]] β see below for a compact way to codify ternary using nonary (base 9) and [[septemvigesimal]] (base 27). {| class="wikitable" style="float:right; text-align:center" |+ A ternary [[multiplication table]] |- ! Γ || '''1'''|| '''2''' || '''10''' || '''11''' || '''12''' || '''20''' || '''21''' || '''22''' || '''100''' |- ! '''1''' | 1 || 2 || 10 || 11 || 12 || 20 || 21 || 22 || 100 |- ! '''2''' | 2 || 11 || 20 || 22 || 101 || 110 || 112 || 121 || 200 |- ! '''10''' | 10 || 20 || 100 || 110 || 120 || 200 || 210 || 220 || 1,000 |- ! '''11''' | 11 || 22 || 110 || 121 || 202 || 220 || 1,001 || 1,012 || 1,100 |- ! '''12''' | 12 || 101 || 120 || 202 || 221 || 1,010 | 1,022 || 1,111 || 1,200 |- ! '''20''' | 20 || 110 || 200 || 220 || 1,010 || 1,100 | 1,120 || 1,210 || 2,000 |- ! '''21''' | 21 || 112 || 210 || 1,001 || 1,022 || 1,120 | 1,211 || 2,002 || 2,100 |- ! '''22''' | 22 || 121 || 220 || 1,012 || 1,111 || 1,210 | 2,002 || 2,101 || 2,200 |- ! '''100''' | 100 || 200 || 1,000 || 1,100 || 1,200 || 2,000 | 2,100 || 2,200 || 10,000 |} :{| class="wikitable" |+ '''Numbers from 0 to 3<sup>3</sup> β 1 in standard ternary''' |- align="center" ! Ternary | 0 || 1 || 2 || 10 || 11 || 12 || 20 || 21 || 22 |- align="center" ! Binary | 0 || 1 || 10 || 11 || 100 || 101 || 110 || 111 || {{gaps|1|000}} |- align="center" ! Senary | 0 || 1 || 2 || 3 || 4 || 5 || 10 || 11 || 12 |- align="center" ! Decimal ! 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 |- |colspan=10 style="background-color:white;"| |- align="center" ! Ternary | 100 || 101 || 102 || 110 || 111 || 112 || 120 || 121 || 122 |- align="center" ! Binary | 1001 || 1010 || 1011 || 1100 || 1101 || 1110 || 1111 | {{gaps|1|0000}} || {{gaps|1|0001}} |- align="center" ! Senary | 13 || 14 || 15 || 20 || 21 || 22 || 23 || 24 || 25 |- align="center" ! Decimal ! 9 ||10 || 11 || 12|| 13 || 14 || 15 || 16 || 17 |- |colspan=10 style="background-color:white;"| |- align="center" ! Ternary | 200 || 201 || 202 || 210 || 211 || 212 || 220 || 221 || 222 |- align="center" ! Binary | {{gaps|1|0010}} || {{gaps|1|0011}} || {{gaps|1|0100}} || {{gaps|1|0101}} || {{gaps|1|0110}} | {{gaps|1|0111}} || {{gaps|1|1000}} || {{gaps|1|1001}} || {{gaps|1|1010}} |- align="center" ! Senary | 30 || 31 || 32 || 33 || 34 || 35 || 40 || 41 || 42 |- align="center" ! Decimal ! 18 || 19 || 20 || 21 || 22 || 23 || 24 || 25 || 26 |} : :{| class="wikitable" |+ '''Powers of 3 in ternary''' |- align="center" ! Ternary | 1 || 10 || 100 || {{gaps|1|000}} || {{gaps|10|000}} |- align="center" ! Binary | 1 || 11 || 1001 || {{gaps|1|1011}} || {{gaps|101|0001}} |- align="center" ! Senary | 1 || 3 || 13 || 43 || 213 |- align="center" ! Decimal | 1 || 3 || 9 || 27 || 81 |- align="center" ! Power ! {{big|3}}{{sup|0}} || {{big|3}}{{sup|1}} || {{big|3}}{{sup|2}} ! {{big|3}}{{sup|3}} || {{big|3}}{{sup|4}} |- |colspan=10 style="background-color:white;"| |- align="center" ! Ternary | {{gaps|100|000}} || {{gaps|1|000|000}} || {{gaps|10|000|000}} | {{gaps|100|000|000}} || {{gaps|1|000|000|000}} |- align="center" ! Binary | {{gaps|1111|0011}} || {{gaps|10|1101|1001}} || {{gaps|1000|1000|1011}} | {{gaps|1|1001|1010|0001}} || {{gaps|100|1100|1110|0011}} |- align="center" ! Senary | {{gaps|1|043}} || {{gaps|3|213}} || {{gaps|14|043}} || {{gaps|50|213}} || {{gaps|231|043}} |- align="center" ! Decimal | 243 || 729 || {{gaps|2|187}} || {{gaps|6|561}} || {{gaps|19|683}} |- align="center" ! Power ! {{big|3}}{{sup|5}} || {{big|3}}{{sup|6}} || {{big|3}}{{sup|7}} ! {{big|3}}{{sup|8}} || {{big|3}}{{sup|9}} |} As for [[rational number]]s, ternary offers a convenient way to represent {{sfrac|1|3}} as same as senary (as opposed to its cumbersome representation as an infinite string of [[recurring decimal|recurring digits]] in decimal); but a major drawback is that, in turn, ternary does not offer a finite representation for {{sfrac|1|2}} (nor for {{sfrac|1|4}}, {{sfrac|1|8}}, etc.), because [[2 (number)|2]] is not a [[Prime number|prime]] [[factorization|factor]] of the base; as with base two, one-tenth (decimal{{sfrac|1|10}}, senary {{sfrac|1|14}}) is not representable exactly (that would need e.g. decimal); nor is one-sixth (senary {{sfrac|1|10}}, decimal {{sfrac|1|6}}). :{| class="wikitable" |+ '''Fractions in ternary''' |- align="center" ! Fraction | '''{{sfrac|1|2}}''' || '''{{sfrac|1|3}}''' || '''{{sfrac|1|4}}''' || '''{{sfrac|1|5}}''' || '''{{sfrac|1|6}}''' || '''{{sfrac|1|7}}''' || '''{{sfrac|1|8}}''' || '''{{sfrac|1|9}}''' || '''{{sfrac|1|10}}''' || '''{{sfrac|1|11}}''' || '''{{sfrac|1|12}}''' || '''{{sfrac|1|13}}''' |- align="center" ! Ternary | 0.{{overline|1}} || 0.1 || 0.{{overline|02}} || 0.{{overline|0121}} || 0.0{{overline|1}} || 0.{{overline|010212}} || 0.{{overline|01}} || 0.01 || 0.{{overline|0022}} || 0.{{overline|00211}} || 0.0{{overline|02}} || 0.{{overline|002}} |- align="center" ! Binary | 0.1 || 0.{{overline|01}} || 0.01 || 0.{{overline|0011}} || 0.0{{overline|01}} || 0.{{overline|001}} || 0.001 || 0.{{overline|000111}} || 0.0{{overline|0011}} || 0.{{overline|0001011101}} || 0.00{{overline|01}} || 0.{{overline|000100111011}} |- align="center" ! Senary | 0.3 || 0.2 || 0.13 || 0.{{overline|1}} || 0.1 || 0.{{overline|05}} || 0.043 || 0.04 || 0.0{{overline|3}} || 0.{{overline|0313452421}} || 0.03 || 0.{{overline|024340531215}} |- align="center" ! Decimal ! 0.5 || 0.{{overline|3}} || 0.25 || 0.2 || 0.1{{overline|6}} || 0.{{overline|142857}} || 0.125 ! 0.{{overline|1}} || 0.1 || 0.{{overline|09}} || 0.08{{overline|3}} || 0.{{overline|076923}} |} === Sum of the digits in ternary as opposed to binary === The value of a binary number with ''n'' bits that are all 1 is {{math|2<sup>''n''</sup> β 1}}. Similarly, for a number ''N''(''b'', ''d'') with base ''b'' and ''d'' digits, all of which are the maximal digit value {{math|''b'' β 1}}, we can write: : {{math|1=''N''(''b'', ''d'') = (''b'' β 1)''b''<sup>''d''β1</sup> + (''b'' β 1)''b''<sup>''d''β2</sup> + β¦ + (''b'' β 1)''b''<sup>1</sup> + (''b'' β 1)''b''<sup>0</sup>,}} : {{math|1={{white|''N''(''b'', ''d'')}} = (''b'' β 1)(''b''<sup>''d''β1</sup> + ''b''<sup>''d''β2</sup> + β¦ + ''b''<sup>1</sup> + 1),}} : {{math|1={{white|''N''(''b'', ''d'')}} = (''b'' β 1)''M''}}. : {{math|1=''bM'' = ''b''<sup>''d''</sup> + ''b''<sup>''d''β1</sup> + β¦ + ''b''<sup>2</sup> + ''b''<sup>1</sup>}} and : {{math|1=β''M'' = β''b''<sup>''d''β1</sup> β ''b''<sup>''d''β2</sup> β ... β b<sup>1</sup> β 1}}, so : {{math|1=''bM'' β ''M'' = ''b''<sup>''d''</sup> β 1}}, or : {{math|1=''M'' = {{sfrac|''b''<sup>''d''</sup> β 1|''b'' β 1}}.}} Then : {{math|1=''N''(''b'', ''d'') = (''b'' β 1)''M'',}} : {{math|1={{white|''N''(''b'', ''d'')}} = {{sfrac|(''b'' β 1)(''b''<sup>''d''</sup> β 1)|''b'' β 1}},}} : {{math|1={{white|''N''(''b'', ''d'')}} = ''b''<sup>''d''</sup> β 1.}} For a three-digit ternary number, {{math|1=''N''(3, 3) = 3<sup>3</sup> β 1 = 26 = 2 Γ 3<sup>2</sup> + 2 Γ 3<sup>1</sup> + 2 Γ 3<sup>0</sup> = 18 + 6 + 2}}. === Compact ternary representation: base 9 and 27 === {| class="wikitable" style="float:right; text-align:center" |+ Comparison between ternary and nonary |- ! ternary || nonary |- | 00 || 0 |- | 01 || 1 |- | 02 || 2 |- | 10 || 3 |- | 11 || 4 |- | 12 || 5 |- | 20 || 6 |- | 21 || 7 |- | 22 || 8 |} '''Nonary''' {{IPAc-en|Λ|n|Ι|n|Ιr|i}} (base 9, each digit is two ternary digits) or [[septemvigesimal]] (base 27, each digit is three ternary digits) can be used for compact representation of ternary, similar to how [[octal]] and [[hexadecimal]] systems are used in place of [[binary numeral system|binary]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ternary numeral system
(section)
Add topic