Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Solvable group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Motivation == Historically, the word "solvable" arose from [[Galois theory]] and the proof of the general unsolvability of [[quintic]] equations. Specifically, a [[polynomial equation]] is solvable in [[Nth root|radicals]] if and only if the corresponding [[Galois group]] is solvable<ref>{{Cite book|last=Milne|url=https://www.jmilne.org/math/CourseNotes/FT.pdf|title=Field Theory|pages=45}}</ref> (note this theorem holds only in [[characteristic of a field|characteristic]] 0). This means associated to a polynomial <math>f \in F[x]</math> there is a tower of field extensions<blockquote><math>F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=K</math></blockquote>such that # <math>F_i = F_{i-1}[\alpha_i]</math> where <math>\alpha_i^{m_i} \in F_{i-1}</math>, so <math>\alpha_i</math> is a solution to the equation <math>x^{m_i} - a</math> where <math>a \in F_{i-1}</math> # <math>F_m</math> contains a [[splitting field]] for <math>f(x)</math> === Example === The smallest Galois field extension of <math>\mathbb{Q}</math> containing the element<blockquote><math>a = \sqrt[5]{\sqrt{2} + \sqrt{3}}</math></blockquote>gives a solvable group. The associated field extensions<blockquote><math>\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}\right) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}, a\right)</math></blockquote>give a solvable group of Galois extensions containing the following [[composition factor]]s (where <math>1</math> is the identity permutation). * <math>\mathrm{Aut}\left(\mathbb{Q(\sqrt{2})}\right/\mathbb{Q}) \cong \mathbb{Z}/2 </math> with group action <math>f\left(\pm\sqrt{2}\right) = \mp\sqrt{2}, \ f^2 = 1</math>, and [[Minimal polynomial (field theory)|minimal polynomial]] <math>x^2 - 2</math> * <math>\mathrm{Aut}\left(\mathbb{Q(\sqrt{2},\sqrt{3})}\right/\mathbb{Q(\sqrt{2})}) \cong \mathbb{Z}/2 </math> with group action <math>g\left(\pm\sqrt{3}\right) = \mp\sqrt{3} ,\ g^2 = 1</math>, and minimal polynomial <math>x^2 - 3</math> * <math>\mathrm{Aut}\left( \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}\right)/ \mathbb{Q}(\sqrt{2}, \sqrt{3}) \right) \cong \mathbb{Z}/4 </math> with group action <math>h^n\left(e^{2im\pi/5}\right) = e^{2(n+1)mi\pi/5} , \ 0 \leq n \leq 3, \ h^4 = 1</math>, and minimal polynomial <math>x^4 + x^3+x^2+x+1 = (x^5 - 1)/(x-1)</math> containing the 5th roots of unity excluding <math>1</math> * <math>\mathrm{Aut}\left( \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}, a\right)/ \mathbb{Q}(\sqrt{2}, \sqrt{3})\left(e^{2i\pi/ 5}\right) \right) \cong \mathbb{Z}/5 </math> with group action <math>j^l(a) = e^{2li\pi/5}a, \ j^5 = 1</math>, and minimal polynomial <math>x^5 - \left(\sqrt{2} + \sqrt{3}\right)</math> Each of the defining group actions (for example, <math>fgh^3j^4 </math>) changes a single extension while keeping all of the other extensions fixed. The 80 group actions are the set <math>\{f^ag^bh^nj^l,\ 0 \leq a, b \leq 1,\ 0 \leq n \leq 3,\ 0 \leq l \leq 4 \}</math>. This group is not [[Abelian group|abelian]]. For example, <math>hj(a) = h(e^{2i\pi/5}a) = e^{4i\pi/5}a </math>, whilst <math>jh(a) = j(a) = e^{2i\pi/5}a</math>, and in fact, <math>jh = hj^3</math>. It is isomorphic to <math>(\mathbb{Z}_5 \rtimes_\varphi \mathbb{Z}_4) \times (\mathbb{Z}_2 \times \mathbb{Z}_2) </math>, where <math>\varphi_h(j) = hjh^{-1} = j^2 </math>, defined using the [[semidirect product]] and [[Direct product of groups|direct product]] of the [[cyclic group]]s. <math>\mathbb{Z}_4 </math> is not a normal subgroup.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Solvable group
(section)
Add topic