Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Self-organizing map
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Overview == Self-organizing maps, like most artificial neural networks, operate in two modes: training and mapping. First, training uses an input data set (the "input space") to generate a lower-dimensional representation of the input data (the "map space"). Second, mapping classifies additional input data using the generated map. In most cases, the goal of training is to represent an input space with ''p'' dimensions as a map space with two dimensions. Specifically, an input space with ''p'' variables is said to have ''p'' dimensions. A map space consists of components called "nodes" or "neurons", which are arranged as a [[hexagonal]] or [[rectangular]] grid with two dimensions.<ref>{{cite web |url=http://users.ics.aalto.fi/jhollmen/dippa/node9.html |author=Jaakko Hollmen |date=9 March 1996 |title=Self-Organizing Map (SOM) |website=[[Aalto University]]}}</ref> The number of nodes and their arrangement are specified beforehand based on the larger goals of the analysis and [[exploratory data analysis|exploration of the data]]. Each node in the map space is associated with a "weight" vector, which is the position of the node in the input space. While nodes in the map space stay fixed, training consists in moving weight vectors toward the input data (reducing a distance metric such as [[Euclidean distance]]) without spoiling the topology induced from the map space. After training, the map can be used to classify additional observations for the input space by finding the node with the closest weight vector (smallest distance metric) to the input space vector.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Self-organizing map
(section)
Add topic