Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sedenion
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Arithmetic == [[File:Sedenion-Fano Tesseract.gif|thumb|A visualization of a 4D extension to the cubic [[Octonion#Fano plane mnemonic|octonion]],<ref>{{Harv|Baez|2002|loc=p. 6}}</ref> showing the 35 triads as [[hyperplane]]s through the real <math>(e_0)</math> vertex of the sedenion example given]] Every sedenion is a [[linear combination]] of the unit sedenions <math>e_0</math>, <math>e_1</math>, <math>e_2</math>, <math>e_3</math>, ..., <math>e_{15}</math>, which form a [[Basis (linear algebra)|basis]] of the [[vector space]] of sedenions. Every sedenion can be represented in the form :<math>x = x_0 e_0 + x_1 e_1 + x_2 e_2 + \cdots + x_{14} e_{14} + x_{15} e_{15}.</math> Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is [[distributive property|distributive]] over addition. Like other algebras based on the [[Cayley–Dickson construction]], the sedenions contain the algebra they were constructed from. So they contain the octonions (generated by <math>e_0</math> to <math>e_7</math> in the table below), and therefore also the [[quaternion]]s (generated by <math>e_0</math> to <math>e_3</math>), [[complex number]]s (generated by <math>e_0</math> and <math>e_1</math>) and real numbers (generated by <math>e_0</math>). === Multiplication === Like [[octonion]]s, [[multiplication]] of sedenions is neither [[commutative]] nor [[associative]]. However, in contrast to the octonions, the sedenions do not even have the property of being [[alternative algebra|alternative]]. They do, however, have the property of [[power associativity]], which can be stated as that, for any element <math>x</math> of <math>\mathbb{S}</math>, the power <math>x^n</math> is well defined. They are also [[Flexible algebra|flexible]]. The sedenions have a multiplicative [[identity element]] <math>e_0</math> and multiplicative inverses, but they are not a [[division algebra]] because they have [[zero divisors]]: two nonzero sedenions can be multiplied to obtain zero, for example <math>(e_3 + e_{10})(e_6 - e_{15})</math>. All [[hypercomplex number]] systems after sedenions that are based on the Cayley–Dickson construction also contain zero divisors. The sedenion multiplication table is shown below: {| class="wikitable" style="margin:1em auto; text-align: center;" !colspan="2" rowspan="2"| <math>e_ie_j</math> !colspan="16" |<math>e_j</math> |- ! <math>e_0</math> ! <math>e_1</math> ! <math>e_2</math> ! <math>e_3</math> ! <math>e_4</math> ! <math>e_5</math> ! <math>e_6</math> ! <math>e_7</math> ! <math>e_8</math> ! <math>e_9</math> ! <math>e_{10}</math> ! <math>e_{11}</math> ! <math>e_{12}</math> ! <math>e_{13}</math> ! <math>e_{14}</math> ! <math>e_{15}</math> |- <!-- Would color coding the cells be nice or annoying? There are too many similar greenish shades though... --> ! rowspan="16" | <math>e_i</math> ! width="30pt" | <math>e_0</math><!-- color: white; when minus sign --> | width="30pt" <!-- style="color: black; background-color: hsla( 0, 0%, 50%, 1);" --> | <math>e_0</math> | width="30pt" <!-- style="color: black; background-color: hsla( 0, 100%, 50%, 1);" --> | <math>e_1</math> | width="30pt" <!-- style="color: black; background-color: hsla( 16, 100%, 50%, 1);" --> | <math>e_2</math> | width="30pt" <!-- style="color: black; background-color: hsla( 32, 100%, 50%, 1);" --> | <math>e_3</math> | width="30pt" <!-- style="color: black; background-color: hsla( 48, 100%, 50%, 1);" --> | <math>e_4</math> | width="30pt" <!-- style="color: black; background-color: hsla( 64, 100%, 50%, 1);" --> | <math>e_5</math> | width="30pt" <!-- style="color: black; background-color: hsla( 80, 100%, 50%, 1);" --> | <math>e_6</math> | width="30pt" <!-- style="color: black; background-color: hsla( 96, 100%, 50%, 1);" --> | <math>e_7</math> | width="30pt" <!-- style="color: black; background-color: hsla(112, 100%, 50%, 1);" --> | <math>e_8</math> | width="30pt" <!-- style="color: black; background-color: hsla(128, 100%, 50%, 1);" --> | <math>e_9</math> | width="30pt" <!-- style="color: black; background-color: hsla(144, 100%, 50%, 1);" --> | <math>e_{10}</math> | width="30pt" <!-- style="color: black; background-color: hsla(160, 100%, 50%, 1);" --> | <math>e_{11}</math> | width="30pt" <!-- style="color: black; background-color: hsla(176, 100%, 50%, 1);" --> | <math>e_{12}</math> | width="30pt" <!-- style="color: black; background-color: hsla(192, 100%, 50%, 1);" --> | <math>e_{13}</math> | width="30pt" <!-- style="color: black; background-color: hsla(208, 100%, 50%, 1);" --> | <math>e_{14}</math> | width="30pt" <!-- style="color: black; background-color: hsla(224, 100%, 50%, 1);" --> | <math>e_{15}</math> |- ! <math>e_1</math> | <math>e_1</math> | <math>-e_0</math> | <math>e_3</math> | <math>-e_2</math> | <math>e_5</math> | <math>-e_4</math> | <math>-e_7</math> | <math>e_6</math> | <math>e_9</math> | <math>-e_8</math> | <math>-e_{11}</math> | <math>e_{10}</math> | <math>-e_{13}</math> | <math>e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> |- ! <math>e_2</math> | <math>e_2</math> | <math>-e_3</math> | <math>-e_0</math> | <math>e_1</math> | <math>e_6</math> | <math>e_7</math> | <math>-e_4</math> | <math>-e_5</math> | <math>e_{10}</math> | <math>e_{11}</math> | <math>-e_8</math> | <math>-e_9</math> | <math>-e_{14}</math> | <math>-e_{15}</math> | <math>e_{12}</math> | <math>e_{13}</math> |- ! <math>e_3</math> | <math>e_3</math> | <math>e_2</math> | <math>-e_1</math> | <math>-e_0</math> | <math>e_7</math> | <math>-e_6</math> | <math>e_5</math> | <math>-e_4</math> | <math>e_{11}</math> | <math>-e_{10}</math> | <math>e_9</math> | <math>-e_8</math> | <math>-e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>e_{12}</math> |- ! <math>e_4</math> | <math>e_4</math> | <math>-e_5</math> | <math>-e_6</math> | <math>-e_7</math> | <math>-e_0</math> | <math>e_1</math> | <math>e_2</math> | <math>e_3</math> | <math>e_{12}</math> | <math>e_{13}</math> | <math>e_{14}</math> | <math>e_{15}</math> | <math>-e_8</math> | <math>-e_9</math> | <math>-e_{10}</math> | <math>-e_{11}</math> |- ! <math>e_5</math> | <math>e_5</math> | <math>e_4</math> | <math>-e_7</math> | <math>e_6</math> | <math>-e_1</math> | <math>-e_0</math> | <math>-e_3</math> | <math>e_2</math> | <math>e_{13}</math> | <math>-e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> | <math>e_9</math> | <math>-e_8</math> | <math>e_{11}</math> | <math>-e_{10}</math> |- ! <math>e_6</math> | <math>e_6</math> | <math>e_7</math> | <math>e_4</math> | <math>-e_5</math> | <math>-e_2</math> | <math>e_3</math> | <math>-e_0</math> | <math>-e_1</math> | <math>e_{14}</math> | <math>-e_{15}</math> | <math>-e_{12}</math> | <math>e_{13}</math> | <math>e_{10}</math> | <math>-e_{11}</math> | <math>-e_8</math> | <math>e_9</math> |- ! <math>e_7</math> | <math>e_7</math> | <math>-e_6</math> | <math>e_5</math> | <math>e_4</math> | <math>-e_3</math> | <math>-e_2</math> | <math>e_1</math> | <math>-e_0</math> | <math>e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>-e_{12}</math> | <math>e_{11}</math> | <math>e_{10}</math> | <math>-e_9</math> | <math>-e_8</math> |- ! <math>e_8</math> | <math>e_8</math> | <math>-e_9</math> | <math>-e_{10}</math> | <math>-e_{11}</math> | <math>-e_{12}</math> | <math>-e_{13}</math> | <math>-e_{14}</math> | <math>-e_{15}</math> | <math>-e_0</math> | <math>e_1</math> | <math>e_2</math> | <math>e_3</math> | <math>e_4</math> | <math>e_5</math> | <math>e_6</math> | <math>e_7</math> |- ! <math>e_9</math> | <math>e_9</math> | <math>e_8</math> | <math>-e_{11}</math> | <math>e_{10}</math> | <math>-e_{13}</math> | <math>e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> | <math>-e_1</math> | <math>-e_0</math> | <math>-e_3</math> | <math>e_2</math> | <math>-e_5</math> | <math>e_4</math> | <math>e_7</math> | <math>-e_6</math> |- ! <math>e_{10}</math> | <math>e_{10}</math> | <math>e_{11}</math> | <math>e_8</math> | <math>-e_9</math> | <math>-e_{14}</math> | <math>-e_{15}</math> | <math>e_{12}</math> | <math>e_{13}</math> | <math>-e_2</math> | <math>e_3</math> | <math>-e_0</math> | <math>-e_1</math> | <math>-e_6</math> | <math>-e_7</math> | <math>e_4</math> | <math>e_5</math> |- ! <math>e_{11}</math> | <math>e_{11}</math> | <math>-e_{10}</math> | <math>e_9</math> | <math>e_8</math> | <math>-e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>e_{12}</math> | <math>-e_3</math> | <math>-e_2</math> | <math>e_1</math> | <math>-e_0</math> | <math>-e_7</math> | <math>e_6</math> | <math>-e_5</math> | <math>e_4</math> |- ! <math>e_{12}</math> | <math>e_{12}</math> | <math>e_{13}</math> | <math>e_{14}</math> | <math>e_{15}</math> | <math>e_8</math> | <math>-e_9</math> | <math>-e_{10}</math> | <math>-e_{11}</math> | <math>-e_4</math> | <math>e_5</math> | <math>e_6</math> | <math>e_7</math> | <math>-e_0</math> | <math>-e_1</math> | <math>-e_2</math> | <math>-e_3</math> |- ! <math>e_{13}</math> | <math>e_{13}</math> | <math>-e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> | <math>e_9</math> | <math>e_8</math> | <math>e_{11}</math> | <math>-e_{10}</math> | <math>-e_5</math> | <math>-e_4</math> | <math>e_7</math> | <math>-e_6</math> | <math>e_1</math> | <math>-e_0</math> | <math>e_3</math> | <math>-e_2</math> |- ! <math>e_{14}</math> | <math>e_{14}</math> | <math>-e_{15}</math> | <math>-e_{12}</math> | <math>e_{13}</math> | <math>e_{10}</math> | <math>-e_{11}</math> | <math>e_8</math> | <math>e_9</math> | <math>-e_6</math> | <math>-e_7</math> | <math>-e_4</math> | <math>e_5</math> | <math>e_2</math> | <math>-e_3</math> | <math>-e_0</math> | <math>e_1</math> |- ! <math>e_{15}</math> | <math>e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>-e_{12}</math> | <math>e_{11}</math> | <math>e_{10}</math> | <math>-e_9</math> | <math>e_8</math> | <math>-e_7</math> | <math>e_6</math> | <math>-e_5</math> | <math>-e_4</math> | <math>e_3</math> | <math>e_2</math> | <math>-e_1</math> | <math>-e_0</math> |} === Sedenion properties === [[File:PG(3,2) g005.png|thumb|right|An illustration of the structure of [[PG(3,2)]] that provides the multiplication law for sedenions, as shown by {{harvtxt|Saniga|Holweck|Pracna|2015}}. Any three points (representing three sedenion imaginary units) lying on the same line are such that the product of two of them yields the third one, sign disregarded.]] From the above table, we can see that: :<math>e_0e_i = e_ie_0 = e_i \, \text{for all} \, i,</math> :<math>e_ie_i = -e_0 \,\, \text{for}\,\, i \neq 0,</math> and :<math>e_ie_j = -e_je_i \,\, \text{for}\,\, i \neq j \,\,\text{with}\,\, i,j \neq 0.</math> ==== Anti-associative ==== The sedenions are not fully anti-associative. Choose any four generators, <math>i,j,k</math> and <math>l</math>. The following 5-cycle shows that these five relations cannot all be anti-associative. <math display="block">(ij)(kl) = -((ij)k)l = (i(jk))l = -i((jk)l) = i(j(kl)) = -(ij)(kl) = 0</math> In particular, in the table above, using <math>e_1,e_2,e_4</math> and <math>e_8</math> the last expression associates. <math>(e_1e_2)e_{12} = e_1(e_2e_{12}) = -e_{15}</math> === Quaternionic subalgebras === The particular sedenion multiplication table shown above is represented by 35 triads. The table and its triads have been constructed from an [[octonion]] represented by the bolded set of 7 triads using [[Cayley–Dickson construction]]. It is one of 480 possible sets of 7 triads (one of two shown in the octonion article) and is the one based on the Cayley–Dickson construction of [[quaternions]] from two possible quaternion constructions from the [[complex numbers]]. The binary representations of the indices of these triples [[bitwise XOR]] to 0. These 35 triads are: { '''{1, 2, 3}''', '''{1, 4, 5}''', '''{1, 7, 6}''', {1, 8, 9}, {1, 11, 10}, {1, 13, 12}, {1, 14, 15}, <br /> '''{2, 4, 6}''', '''{2, 5, 7}''', {2, 8, 10}, {2, 9, 11}, {2, 14, 12}, {2, 15, 13}, '''{3, 4, 7}''', <br /> '''{3, 6, 5}''', {3, 8, 11}, {3, 10, 9}, {3, 13, 14}, {3, 15, 12}, {4, 8, 12}, {4, 9, 13}, <br /> {4, 10, 14}, {4, 11, 15}, {5, 8, 13}, {5, 10, 15}, {5, 12, 9}, {5, 14, 11}, {6, 8, 14}, <br /> {6, 11, 13}, {6, 12, 10}, {6, 15, 9}, {7, 8, 15}, {7, 9, 14}, {7, 12, 11}, {7, 13, 10} } === Zero divisors === The list of 84 sets of zero divisors <math>\{e_a, e_b, e_c, e_d\}</math>, where <math>(e_a + e_b) \circ (e_c + e_d) = 0</math>: <math display="block">\begin{array}{c} \text{Sedenion Zero Divisors} \quad \{ e_a, e_b, e_c, e_d \} \\ \text{where} ~ (e_a + e_b) \circ (e_c + e_d) = 0 \\ \begin{array}{ccc} 1 \leq a \leq 6, & c > a, & 9 \leq b \leq 15 \\ \end{array} \\ \\ \begin{array}{lccr} \{ 9 \leq d \leq 15 \} & \{ -9 \geq d \geq -15 \} & \{ 9 \leq d \leq 15 \} & \{ -9 \geq d \geq -15 \}\\ \end{array} \\ \\ \begin{array}{lccr} \{e_1, e_{10}, e_5, e_{14}\} & \{e_1, e_{10}, e_4, -e_{15}\} & \{e_1, e_{10}, e_7, e_{12}\} & \{e_1, e_{10}, e_6, -e_{13}\} \\ \{e_1, e_{11}, e_4, e_{14}\} & \{e_1, e_{11}, e_6, -e_{12}\} & \{e_1, e_{11}, e_5, e_{15}\} & \{e_1, e_{11}, e_7, -e_{13}\} \\ \{e_1, e_{12}, e_2, e_{15}\} & \{e_1, e_{12}, e_3, -e_{14}\} & \{e_1, e_{12}, e_6, e_{11}\} & \{e_1, e_{12}, e_7, -e_{10}\} \\ \{e_1, e_{13}, e_6, e_{10}\} & \{e_1, e_{13}, e_2, -e_{14}\} & \{e_1, e_{13}, e_7, e_{11}\} & \{e_1, e_{13}, e_3, -e_{15}\} \\ \{e_1, e_{14}, e_2, e_{13}\} & \{e_1, e_{14}, e_4, -e_{11}\} & \{e_1, e_{14}, e_3, e_{12}\} & \{e_1, e_{14}, e_5, -e_{10}\} \\ \{e_1, e_{15}, e_3, e_{13}\} & \{e_1, e_{15}, e_2, -e_{12}\} & \{e_1, e_{15}, e_4, e_{10}\} & \{e_1, e_{15}, e_5, -e_{11}\} \\ \\ \{e_2, e_9, e_4, e_{15}\} & \{e_2, e_9, e_5, -e_{14}\} & \{e_2, e_9, e_6, e_{13}\} & \{e_2, e_9, e_7, -e_{12}\} \\ \{e_2, e_{11}, e_5, e_{12}\} & \{e_2, e_{11}, e_4, -e_{13}\} & \{e_2, e_{11}, e_6, e_{15}\} & \{e_2, e_{11}, e_7, -e_{14}\} \\ \{e_2, e_{12}, e_3, e_{13}\} & \{e_2, e_{12}, e_5, -e_{11}\} & \{e_2, e_{12}, e_7, e_9 \} & \{e_2, e_{13}, e_3, -e_{12}\} \\ \{e_2, e_{13}, e_4, e_{11}\} & \{e_2, e_{13}, e_6, -e_9 \} & \{e_2, e_{14}, e_5, e_9 \} & \{e_2, e_{14}, e_3, -e_{15}\} \\ \{e_2, e_{14}, e_7, e_{11}\} & \{e_2, e_{15}, e_4, -e_9 \} & \{e_2, e_{15}, e_3, e_{14}\} & \{e_2, e_{15}, e_6, -e_{11}\} \\ \\ \{e_3, e_9, e_6, e_{12}\} & \{e_3, e_9, e_4, -e_{14}\} & \{e_3, e_9, e_7, e_{13}\} & \{e_3, e_9, e_5, -e_{15}\} \\ \{e_3, e_{10}, e_4, e_{13}\} & \{e_3, e_{10}, e_5, -e_{12}\} & \{e_3, e_{10}, e_7, e_{14}\} & \{e_3, e_{10}, e_6, -e_{15}\} \\ \{e_3, e_{12}, e_5, e_{10}\} & \{e_3, e_{12}, e_6, -e_9 \} & \{e_3, e_{14}, e_4, e_9 \} & \{e_3, e_{13}, e_4, -e_{10}\} \\ \{e_3, e_{15}, e_5, e_9 \} & \{e_3, e_{13}, e_7, -e_9 \} & \{e_3, e_{15}, e_6, e_{10}\} & \{e_3, e_{14}, e_7, -e_{10}\} \\ \\ \{e_4, e_9, e_7, e_{10}\} & \{e_4, e_9, e_6, -e_{11}\} & \{e_4, e_{10}, e_5, e_{11}\} & \{e_4, e_{10}, e_7, -e_9 \} \\ \{e_4, e_{11}, e_6, e_9 \} & \{e_4, e_{11}, e_5, -e_{10}\} & \{e_4, e_{13}, e_6, e_{15}\} & \{e_4, e_{13}, e_7, -e_{14}\} \\ \{e_4, e_{14}, e_7, e_{13}\} & \{e_4, e_{14}, e_5, -e_{15}\} & \{e_4, e_{15}, e_5, e_{14}\} & \{e_4, e_{15}, e_6, -e_{13}\} \\ \\ \{e_5, e_{10}, e_6, e_9 \} & \{e_5, e_9, e_6, -e_{10}\} & \{e_5, e_{11}, e_7, e_9 \} & \{e_5, e_9, e_7, -e_{11}\} \\ \{e_5, e_{12}, e_7, e_{14}\} & \{e_5, e_{12}, e_6, -e_{15}\} & \{e_5, e_{15}, e_6, e_{12}\} & \{e_5, e_{14}, e_7, -e_{12}\} \\ \\ \{e_6, e_{11}, e_7, e_{10}\} & \{e_6, e_{10}, e_7, -e_{11}\} & \{e_6, e_{13}, e_7, e_{12}\} & \{e_6, e_{12}, e_7, -e_{13}\} \end{array} \end{array}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Sedenion
(section)
Add topic