Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Safe and Sophie Germain primes
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Individual numbers== The first few Sophie Germain primes (those less than 1000) are :2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, ... {{OEIS2C|id=A005384}} Hence, the first few safe primes are :5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, ... {{OEIS2C|id=A005385}} In [[cryptography]], much larger Sophie Germain primes like 1,846,389,521,368 + 11<sup>600</sup> are required. Two distributed computing projects, [[PrimeGrid]] and [[Twin Prime Search]], include searches for large Sophie Germain primes. Some of the largest known Sophie Germain primes are given in the following table.<ref>[http://primes.utm.edu/top20/page.php?id=2 The Top Twenty Sophie Germain Primes] — from the [[Prime Pages]]. Retrieved 17 May 2020.</ref> {| class="wikitable" |- ! Value !! Number<br>of digits !! Time of<br>discovery !! Discoverer |- | 2618163402417 × 2<sup>1290000</sup> − 1 || align="right" | 388342 || February 2016 || Dr. James Scott Brown in a distributed [[PrimeGrid]] search using the programs TwinGen and [[Lucas–Lehmer–Riesel test|LLR]]<ref>{{cite web|title=PrimeGrid's Sophie Germain Prime Search|url=https://www.primegrid.com/download/SGS_2618163402417_1290000.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.primegrid.com/download/SGS_2618163402417_1290000.pdf |archive-date=2022-10-09 |url-status=live|publisher=PrimeGrid|access-date=29 February 2016}}</ref> |- | 18543637900515 × 2<sup>666667</sup> − 1 || align="right" | 200701 || April 2012 || Philipp Bliedung in a distributed [[PrimeGrid]] search using the programs TwinGen and [[Lucas–Lehmer–Riesel test|LLR]]<ref>{{cite web|title=PrimeGrid's Sophie Germain Prime Search|url=http://www.primegrid.com/download/SGS_666667.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.primegrid.com/download/SGS_666667.pdf |archive-date=2022-10-09 |url-status=live|publisher=PrimeGrid|access-date=18 April 2012}}</ref> |- |183027 × 2<sup>265440</sup> − 1 || align="right" | 79911 || March 2010 || Tom Wu using LLR<ref>[http://primes.utm.edu/primes/page.php?id=92222 The Prime Database: 183027*2^265440-1]. From The [[Prime Pages]].</ref> |- |style="white-space:nowrap"|648621027630345 × 2<sup>253824</sup> − 1 and<br>620366307356565 × 2<sup>253824</sup> − 1 || align="right" | 76424 ||style="white-space:nowrap"| November 2009 || Zoltán Járai, Gábor Farkas, Tímea Csajbók, János Kasza and Antal Járai<ref>[http://primes.utm.edu/primes/page.php?id=90907 The Prime Database: 648621027630345*2^253824-1].</ref><ref>[http://primes.utm.edu/primes/page.php?id=90711 The Prime Database: 620366307356565*2^253824-1]</ref> |- |1068669447 × 2<sup>211088</sup> − 1 || align="right" | 63553 || May 2020 || Michael Kwok<ref>[https://primes.utm.edu/primes/page.php?id=130903 The Prime Database: 1068669447*2^211088-1] From The [[Prime Pages]].</ref> |- |99064503957 × 2<sup>200008</sup> − 1 || align="right" | 60220 || April 2016 || S. Urushihata<ref>[https://primes.utm.edu/primes/page.php?id=121507 The Prime Database: 99064503957*2^200008-1] From The [[Prime Pages]].</ref> |- |607095 × 2<sup>176311</sup> − 1 || align="right" | 53081 ||style="white-space:nowrap"| September 2009 || Tom Wu<ref>[http://primes.utm.edu/primes/page.php?id=89999 The Prime Database: 607095*2^176311-1].</ref> |- |48047305725 × 2<sup>172403</sup> − 1 || align="right" | 51910 || January 2007 || David Underbakke using TwinGen and LLR<ref>[http://primes.utm.edu/primes/page.php?id=79261 The Prime Database: 48047305725*2^172403-1].</ref> |- |style="white-space:nowrap"|137211941292195 × 2<sup>171960</sup> − 1 || align="right" | 51780 || May 2006 || Járai et al.<ref>[http://primes.utm.edu/primes/page.php?id=77705 The Prime Database: 137211941292195*2^171960-1].</ref> |- |} On 2 Dec 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, and Paul Zimmermann announced the computation of a [[discrete logarithm]] modulo the 240-digit (795 bit) prime RSA-240 + 49204 (the first safe prime above RSA-240) using a [[General number field sieve|number field sieve]] algorithm; see [[Discrete logarithm records]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Safe and Sophie Germain primes
(section)
Add topic