Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemann curvature tensor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>(M, g)</math> be a [[Riemannian manifold|Riemannian]] or [[pseudo-Riemannian manifold]], and <math>\mathfrak{X}(M)</math> be the space of all [[Vector field|vector fields]] on <math>M</math>. We define the '''Riemann curvature tensor''' as a map <math>\mathfrak{X}(M)\times\mathfrak{X}(M)\times\mathfrak{X}(M)\rightarrow\mathfrak{X}(M)</math> by the following formula{{sfn|Lee|2018|p=196}} where <math>\nabla</math> is the [[Levi-Civita connection]]: : <math>R(X, Y)Z = \nabla_X\nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z</math> or equivalently : <math>R(X, Y) = [\nabla_X,\nabla_Y] - \nabla_{[X, Y]} </math> where <math>[X,Y]</math> is the [[Lie bracket of vector fields]] and <math>[\nabla_X,\nabla_Y] </math> is a commutator of differential operators. It turns out that the right-hand side actually only depends on the value of the vector fields <math>X, Y, Z</math> at a given point, which is notable since the covariant derivative of a vector field also depends on the field values in a neighborhood of the point. Hence, <math>R</math> is a <math>(1,3)</math>-tensor field. For fixed <math>X,Y</math>, the linear transformation <math>Z \mapsto R(X, Y)Z</math> is also called the ''curvature transformation'' or ''endomorphism''. Occasionally, the curvature tensor is defined with the opposite sign. The curvature tensor measures ''noncommutativity of the covariant derivative'', and as such is the [[integrability condition|integrability obstruction]] for the existence of an isometry with Euclidean space (called, in this context, ''flat'' space). Since the Levi-Civita connection is torsion-free, its curvature can also be expressed in terms of the [[second covariant derivative]]<ref name="lawson">{{cite book |last1=Lawson |first1=H. Blaine Jr. |last2=Michelsohn |first2=Marie-Louise |author2-link=Marie-Louise Michelsohn |title=Spin Geometry |url=https://archive.org/details/spingeometry00laws |url-access=limited |year=1989 |page=[https://archive.org/details/spingeometry00laws/page/n166 154] |publisher=Princeton U Press |isbn=978-0-691-08542-5}}</ref> : <math display="inline">\nabla^2_{X,Y} Z = \nabla_X\nabla_Y Z - \nabla_{\nabla_X Y}Z </math> which depends only on the values of <math>X, Y</math> at a point. The curvature can then be written as : <math>R(X, Y) = \nabla^2_{X,Y} - \nabla^2_{Y,X} </math> Thus, the curvature tensor measures the noncommutativity of the second covariant derivative. In [[abstract index notation]], <math display="block">R^d{}_{cab} Z^c = \nabla_a \nabla_b Z^d - \nabla_b \nabla_a Z^d . </math>The Riemann curvature tensor is also the [[commutator]] of the covariant derivative of an arbitrary covector <math>A_{\nu}</math> with itself:<ref>{{cite book |author=Synge J.L., Schild A. |url=https://archive.org/details/tensorcalculus00syng/page/83 |title=Tensor Calculus |publisher=first Dover Publications 1978 edition |year=1949 |isbn=978-0-486-63612-2 |pages=[https://archive.org/details/tensorcalculus00syng/page/83 83; 107]}}</ref><ref>{{cite book |author=P. A. M. Dirac |title=General Theory of Relativity |publisher=[[Princeton University Press]] |year=1996 |isbn=978-0-691-01146-2}}</ref> : <math>A_{\nu;\rho\sigma} - A_{\nu;\sigma\rho} = A_{\beta} R^{\beta}{}_{\nu\rho\sigma}.</math> This formula is often called the ''Ricci identity''.<ref name="lovelockrund">{{cite book |last1=Lovelock |first1=David |title=Tensors, Differential Forms, and Variational Principles |last2=Rund |first2=Hanno |publisher=Dover |year=1989 |isbn=978-0-486-65840-7 |page=84,109 |author-link2=Hanno Rund |orig-year=1975}}</ref> This is the classical method used by [[Gregorio Ricci-Curbastro|Ricci]] and [[Tullio Levi-Civita|Levi-Civita]] to obtain an expression for the Riemann curvature tensor.<ref>{{citation |last1=Ricci |first1=Gregorio |title=Méthodes de calcul différentiel absolu et leurs applications |date=March 1900 |url=https://zenodo.org/record/1428270 |journal=Mathematische Annalen |volume=54 |issue=1–2 |pages=125–201 |doi=10.1007/BF01454201 |s2cid=120009332 |last2=Levi-Civita |first2=Tullio |author-link=Gregorio Ricci-Curbastro}}</ref> This identity can be generalized to get the commutators for two covariant derivatives of arbitrary tensors as follows <ref>{{cite journal |vauthors=Sandberg, Vernon D |date=1978 |title=Tensor spherical harmonics on S 2 and S 3 as eigenvalue problems |url=https://authors.library.caltech.edu/32877/1/SANjmp78.pdf |journal=[[Journal of Mathematical Physics]] |volume=19 |issue=12 |pages=2441–2446 |bibcode=1978JMP....19.2441S |doi=10.1063/1.523649}}</ref> : <math>\begin{align} &\nabla_\delta \nabla_\gamma T^{\alpha_1 \cdots \alpha_r}{}_{\beta_1 \cdots \beta_s} - \nabla_\gamma \nabla_\delta T^{\alpha_1 \cdots \alpha_r}{}_{\beta_1 \cdots \beta_s} \\[3pt] ={} &R^{\alpha_1}{}_{\rho\delta\gamma} T^{\rho\alpha_2 \cdots \alpha_r}{}_{\beta_1 \cdots \beta_s} + \ldots + R^{\alpha_r}{}_{\rho\delta\gamma} T^{\alpha_1 \cdots \alpha_{r-1}\rho}{}_{\beta_1 \cdots \beta_s} - R^{\sigma}{}_{\beta_1\delta\gamma} T^{\alpha_1 \cdots \alpha_r}{}_{\sigma\beta_2 \cdots \beta_s} - \ldots - R^{\sigma}{}_{\beta_s\delta\gamma} T^{\alpha_1 \cdots \alpha_r}{}_{\beta_1 \cdots \beta_{s-1}\sigma} \end{align}</math> This formula also applies to [[tensor density|tensor densities]] without alteration, because for the Levi-Civita (''not generic'') connection one gets:<ref name="lovelockrund" /> : <math>\nabla_{\mu}\left(\sqrt{g}\right) \equiv \left(\sqrt{g}\right)_{;\mu} = 0,</math> where : <math>g = \left|\det\left(g_{\mu\nu}\right)\right|.</math> It is sometimes convenient to also define the purely covariant version of the curvature tensor by :<math>R_{\sigma\mu\nu\rho} = g_{\rho\zeta} R^{\zeta}{}_{\sigma\mu\nu}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemann curvature tensor
(section)
Add topic