Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Planet
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Formation == {{Main|Nebular hypothesis}} {{multiple image | direction = horizontal | header = Artists' impressions | image1 = The_Mysterious_Case_of_the_Disappearing_Dust.jpg | caption1 = A protoplanetary disk | image2 = PIA18469-AsteroidCollision-NearStarNGC2547-ID8-2013.jpg | caption2 = Protoplanets colliding during planet formation | total_width = 400 }} It is not known with certainty how planets are formed. The prevailing theory is that they coalesce during the collapse of a [[nebula]] into a thin disk of gas and dust. A [[protostar]] forms at the core, surrounded by a rotating [[protoplanetary disk]]. Through [[Accretion (astrophysics)|accretion]] (a process of sticky collision) dust particles in the disk steadily accumulate [[mass]] to form ever-larger bodies. Local concentrations of mass known as [[planetesimal]]s form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become increasingly dense until they collapse inward under gravity to form [[protoplanet]]s.<ref>{{cite journal | first=G. W. |last=Wetherill |title=Formation of the Terrestrial Planets |journal=Annual Review of Astronomy and Astrophysics |date=1980 |volume=18 | issue=1 |pages=77–113 |bibcode=1980ARA&A..18...77W |doi=10.1146/annurev.aa.18.090180.000453 |issn=0066-4146}}</ref> After a planet reaches a mass somewhat larger than Mars's mass, it begins to accumulate an extended [[atmosphere]],<ref name=dangelo_bodenheimer_2013>{{cite journal|last1=D'Angelo|first1=G.|last2=Bodenheimer|first2=P.|title=Three-dimensional Radiation-hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks|journal=The Astrophysical Journal|year=2013|volume=778|issue=1|pages=77 (29 pp.)|doi=10.1088/0004-637X/778/1/77|arxiv = 1310.2211 |bibcode = 2013ApJ...778...77D |s2cid=118522228}}</ref> greatly increasing the capture rate of the planetesimals by means of [[Drag (physics)|atmospheric drag]].<ref>{{cite journal | last1=Inaba | first1=S. | last2=Ikoma | first2=M. |title=Enhanced Collisional Growth of a Protoplanet that has an Atmosphere |journal=Astronomy and Astrophysics |date=2003 |volume=410 | issue=2 |pages=711–723 |bibcode=2003A&A...410..711I |doi = 10.1051/0004-6361:20031248|doi-access=free }}</ref><ref name=dangelo2014>{{cite journal|last1=D'Angelo|first1=G.|last2=Weidenschilling | first2=S. J. |last3=Lissauer | first3=J. J. |last4=Bodenheimer | first4=P. |title=Growth of Jupiter: Enhancement of core accretion by a voluminous low-mass envelope|journal=Icarus|date=2014|volume=241|pages=298–312|arxiv=1405.7305|doi=10.1016/j.icarus.2014.06.029|bibcode=2014Icar..241..298D |s2cid=118572605}}</ref> Depending on the accretion history of solids and gas, a [[giant planet]], an [[ice giant]], or a [[terrestrial planet]] may result.<ref name=lhdb2009>{{cite journal|last1=Lissauer|first1=J. J.|last2=Hubickyj | first2=O. |last3=D'Angelo | first3=G. |last4=Bodenheimer | first4=P. |title=Models of Jupiter's growth incorporating thermal and hydrodynamic constraints| journal=Icarus|year=2009|volume=199|issue=2| pages=338–350|arxiv=0810.5186|doi=10.1016/j.icarus.2008.10.004|bibcode=2009Icar..199..338L |s2cid=18964068}}</ref><ref name=ddl2011>{{cite book|last1=D'Angelo|first1=G.|last2=Durisen|first2=R. H.|last3=Lissauer|first3=J. J.|chapter=Giant Planet Formation|bibcode=2010exop.book..319D|title=Exoplanets|publisher=University of Arizona Press, Tucson, AZ|editor-first=S.|editor-last=Seager|pages=319–346|date=2011|chapter-url=http://www.uapress.arizona.edu/Books/bid2263.htm|arxiv=1006.5486|access-date=1 May 2016|archive-date=30 June 2015|archive-url=https://web.archive.org/web/20150630164645/http://www.uapress.arizona.edu/Books/bid2263.htm|url-status=live}}</ref><ref name=chambes2011>{{cite book|last=Chambers|first=J.|chapter=Terrestrial Planet Formation|bibcode=2010exop.book..297C|title=Exoplanets|publisher=University of Arizona Press|location=Tucson, AZ|editor-first=S.|editor-last=Seager|pages=297–317|date=2011|chapter-url=http://www.uapress.arizona.edu/Books/bid2263.htm|access-date=1 May 2016|archive-date=30 June 2015|archive-url=https://web.archive.org/web/20150630164645/http://www.uapress.arizona.edu/Books/bid2263.htm|url-status=live}}</ref> It is thought that the [[regular satellite]]s of Jupiter, Saturn, and Uranus formed in a similar way;<ref name="arxiv0812">{{cite book |author1=Canup, Robin M. |author1-link=Robin Canup |author2=Ward, William R. |title=Origin of Europa and the Galilean Satellites |publisher=[[University of Arizona Press]] |date=2008 |arxiv=0812.4995|bibcode = 2009euro.book...59C |page=59|isbn=978-0-8165-2844-8}}</ref><ref name=dangelo_podolak_2015>{{cite journal|last1=D'Angelo|first1=G.| last2=Podolak | first2=M.|title=Capture and Evolution of Planetesimals in Circumjovian Disks|journal=The Astrophysical Journal|date=2015|volume=806|issue=1|pages=29pp|doi=10.1088/0004-637X/806/2/203|arxiv = 1504.04364 |bibcode = 2015ApJ...806..203D |s2cid=119216797}}</ref> however, [[Triton (moon)|Triton]] was likely [[gravitational capture|captured]] by Neptune,<ref name="Agnor06">{{Cite journal| doi = 10.1038/nature04792| url = http://extranet.on.br/rodney/curso2010/aula9/tritoncapt_hamilton.pdf| title = Neptune's capture of its moon Triton in a binary–planet gravitational encounter| journal = Nature| volume = 441| issue = 7090| pages = 192–4| year = 2006| last1 = Agnor| first1 = C. B.| last2 = Hamilton| first2 = D. P.| pmid = 16688170| bibcode = 2006Natur.441..192A| s2cid = 4420518| access-date = 1 May 2022| archive-date = 14 October 2016| archive-url = https://web.archive.org/web/20161014134243/http://extranet.on.br/rodney/curso2010/aula9/tritoncapt_hamilton.pdf}}</ref> and Earth's Moon<ref name="taylor1998">{{cite web |url=http://www.psrd.hawaii.edu/Dec98/OriginEarthMoon.html |title=Origin of the Earth and Moon |last=Taylor |first=G. Jeffrey |date=31 December 1998 |work=Planetary Science Research Discoveries |publisher=Hawai'i Institute of Geophysics and Planetology |access-date=7 April 2010 |url-status=live |archive-url=https://web.archive.org/web/20100610011142/http://www.psrd.hawaii.edu/Dec98/OriginEarthMoon.html |archive-date=10 June 2010}}</ref> and Pluto's Charon might have formed in collisions.<ref name="Stern_2015"> {{cite journal |title=The Pluto system: Initial results from its exploration by New Horizons |first1=S.A. |last1=Stern |first2=F. |last2=Bagenal |first3=K. |last3=Ennico |first4=G.R. |last4=Gladstone |first5=W.M. |last5=Grundy |first6=W.B. |last6=McKinnon |first7=J.M. |last7=Moore |first8=C.B. |last8=Olkin |first9=J.R. |last9=Spencer |display-authors=4 |journal=Science |date=16 October 2015 |pmid=26472913 |page=aad1815 |volume=350 |issue=6258 |doi=10.1126/science.aad1815 |arxiv=1510.07704 |bibcode=2015Sci...350.1815S |s2cid=1220226 }}</ref> When the protostar has grown such that it ignites to form a star, the surviving disk is removed from the inside outward by [[photoevaporation]], the [[solar wind]], [[Poynting–Robertson effect|Poynting–Robertson drag]] and other effects.<ref>{{cite thesis | last = Dutkevitch |first = Diane |date =1995 |url =http://www.astro.umass.edu/theses/dianne/thesis.html |archive-url =https://web.archive.org/web/20071125124958/http://www.astro.umass.edu/theses/dianne/thesis.html |archive-date=25 November 2007 |title =The Evolution of Dust in the Terrestrial Planet Region of Circumstellar Disks Around Young Stars |type=PhD thesis|publisher=University of Massachusetts Amherst |access-date = 23 August 2008 |bibcode=1995PhDT..........D}}</ref><ref>{{cite journal | last1=Matsuyama | first1=I. | last2=Johnstone | first2=D. | last3=Murray | first3=N. |title=Halting Planet Migration by Photoevaporation from the Central Source |journal=The Astrophysical Journal |date = 2005 |volume=585 |issue=2 |pages=L143–L146 |bibcode=2003ApJ...585L.143M |doi = 10.1086/374406|arxiv = astro-ph/0302042 | s2cid=16301955 }}</ref> Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a larger, combined protoplanet or release material for other protoplanets to absorb.<ref>{{cite journal | last1=Kenyon |first1=Scott J. | last2=Bromley | first2=Benjamin C. |journal=Astronomical Journal |volume=131 | issue=3 |pages=1837–1850 | date=2006 |doi=10.1086/499807 |title= Terrestrial Planet Formation. I. The Transition from Oligarchic Growth to Chaotic Growth | bibcode=2006AJ....131.1837K|arxiv = astro-ph/0503568 |s2cid=15261426 }}</ref> Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become [[natural satellite]]s of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or [[small Solar System body|small bodies]].<ref>{{Cite journal |last1=Martin |first1=R. G. |last2=Livio |first2=M. |date=1 January 2013 |title=On the formation and evolution of asteroid belts and their potential significance for life |journal=Monthly Notices of the Royal Astronomical Society: Letters |language=en |volume=428 |issue=1 |pages=L11–L15 |doi=10.1093/mnrasl/sls003 |issn=1745-3925|doi-access=free |arxiv=1211.0023 }}</ref><ref>{{Cite journal |last=Peale |first=S. J. |date=September 1999 |title=Origin and Evolution of the Natural Satellites |url=https://www.annualreviews.org/doi/10.1146/annurev.astro.37.1.533 |journal=Annual Review of Astronomy and Astrophysics |language=en |volume=37 |issue=1 |pages=533–602 |doi=10.1146/annurev.astro.37.1.533 |bibcode=1999ARA&A..37..533P |issn=0066-4146 |access-date=13 May 2022 |archive-date=13 May 2022 |archive-url=https://web.archive.org/web/20220513181131/https://www.annualreviews.org/doi/10.1146/annurev.astro.37.1.533 }}</ref> {{Multiple image | direction = horizontal | align = right | width = 200 | image1 = 15-044a-SuperNovaRemnant-PlanetFormation-SOFIA-20150319.jpg | image2 = 15-044b-SuperNovaRemnant-PlanetFormation-SOFIA-20150319.jpg | footer_align = center | footer = [[Supernova remnant]] ejecta producing planet-forming material }} The energetic impacts of the smaller planetesimals (as well as [[radioactive decay]]) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by density, with higher density materials sinking toward the [[planetary core|core]].<ref>{{cite journal | journal=Icarus |date=1987 |volume=69 | issue=2 |pages=239–248 |last1=Ida |first1=Shigeru | last2=Nakagawa | first2=Yoshitsugu | last3=Nakazawa | first3=Kiyoshi |title= The Earth's core formation due to the Rayleigh-Taylor instability |doi=10.1016/0019-1035(87)90103-5 |bibcode=1987Icar...69..239I}}</ref> Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the [[mantle (geology)|mantle]] and from the subsequent impact of [[comet]]s<ref>{{cite journal | last=Kasting |first=James F. |title=Earth's early atmosphere |journal=Science |date=1993 |volume=259 |bibcode=1993Sci...259..920K |doi=10.1126/science.11536547 |pmid=11536547 |issue=5097 | pages=920–926|s2cid=21134564 }}</ref> (smaller planets will lose any atmosphere they gain through various [[Atmospheric escape|escape mechanisms]]<ref>{{Cite web |last=Chuang |first=F. |date=6 June 2012 |title=FAQ – Atmosphere |url=https://www.psi.edu/epo/faq/atmosphere.html |access-date=13 May 2022 |website=Planetary Science Institute |language=en |archive-date=23 March 2022 |archive-url=https://web.archive.org/web/20220323224518/https://www.psi.edu/epo/faq/atmosphere.html |url-status=live }}</ref>). With the discovery and observation of [[planetary system]]s around stars other than the Sun, it is becoming possible to elaborate, revise or even replace this account. The level of [[metallicity]]—an astronomical term describing the abundance of [[chemical element]]s with an [[atomic number]] greater than 2 ([[helium]])—appears to determine the likelihood that a star will have planets.<ref>{{cite journal |bibcode=2005ApJ...622.1102F |doi=10.1086/428383 |title=The Planet-Metallicity Correlation |journal=The Astrophysical Journal |volume=622 |issue=2 |page=1102 |year=2005 |last1=Fischer |first1=Debra A. |last2=Valenti |first2=Jeff|doi-access=free }}</ref><ref>{{Cite journal |arxiv=1310.7830 |last1=Wang |first1=Ji |title=Revealing a Universal Planet-Metallicity Correlation for Planets of Different Sizes Around Solar-Type Stars |journal=The Astronomical Journal |volume=149 |issue=1 |page=14 |last2=Fischer |first2=Debra A. |year=2013 |doi=10.1088/0004-6256/149/1/14 |bibcode=2015AJ....149...14W|s2cid=118415186 }}</ref> Hence, a metal-rich [[population I star]] is more likely to have a substantial planetary system than a metal-poor, [[population II star]].<ref>{{Cite book |last1=Harrison |first1=Edward Robert |url=https://books.google.com/books?id=kNxeHD2cbLYC |title=Cosmology: The Science of the Universe |date=2000 |publisher=Cambridge University Press |isbn=978-0-521-66148-5 |page=114 |language=en |access-date=13 May 2022 |archive-date=14 December 2023 |archive-url=https://web.archive.org/web/20231214142630/https://books.google.com/books?id=kNxeHD2cbLYC |url-status=live }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Planet
(section)
Add topic