Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Physical geodesy
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Measurement procedure== Traditional geodetic instruments such as [[theodolite]]s rely on the gravity field for orienting their vertical axis along the local [[plumb line]] or local [[vertical direction]] with the aid of a [[spirit level]]. After that, vertical [[angle]]s ([[zenith]] angles or, alternatively, [[elevation]] angles) are obtained with respect to this local vertical, and horizontal angles in the plane of the local horizon, perpendicular to the vertical. [[Levelling]] instruments again are used to obtain [[geopotential]] differences between points on the Earth's surface. These can then be expressed as "height" differences by conversion to metric units. ===Units=== Gravity is commonly measured in units of m·s<sup>−2</sup> ([[metre]]s per [[second]] squared). This also can be expressed (multiplying by the [[gravitational constant]] '''G''' in order to change units) as [[newton (unit)|newton]]s per [[kilogram]] of attracted mass. Potential is expressed as gravity times distance, m<sup>2</sup>·s<sup>−2</sup>. Travelling one metre in the direction of a gravity vector of strength 1 m·s<sup>−2</sup> will increase your potential by 1 m<sup>2</sup>·s<sup>−2</sup>. Again employing G as a multiplier, the units can be changed to [[joule]]s per kilogram of attracted mass. A more convenient unit is the GPU, or geopotential unit: it equals 10 m<sup>2</sup>·s<sup>−2</sup>. This means that travelling one metre in the vertical direction, i.e., the direction of the 9.8 m·s<sup>−2</sup> ambient gravity, will ''approximately'' change your potential by 1 GPU. Which again means that the difference in geopotential, in GPU, of a point with that of sea level can be used as a rough measure of height "above sea level" in metres.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Physical geodesy
(section)
Add topic