Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pauli matrices
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algebraic properties == {| class="wikitable floatright" style="text-align: center;" |+ [[Cayley table]]; the entry shows the value of the row times the column. ! × ! style=width:3em | <math>\sigma_x</math> ! style=width:3em | <math>\sigma_y</math> ! style=width:3em | <math>\sigma_z</math> |- ! <math>\sigma_x</math> | <math>I</math> || <math>i \sigma_z</math> || <math>-i \sigma_y</math> |- ! <math>\sigma_y</math> | <math>-i \sigma_z</math> || <math>I</math> || <math>i \sigma_x</math> |- ! <math>\sigma_z</math> | <math>i \sigma_y</math> || <math>-i \sigma_x</math> || <math>I</math> |} All three of the Pauli matrices can be compacted into a single expression: :<math> \sigma_j = \begin{pmatrix} \delta_{j3} & \delta_{j1} - i\,\delta_{j2}\\ \delta_{j1} + i\,\delta_{j2} & -\delta_{j3} \end{pmatrix}, </math> where {{mvar|δ{{sub|jk}} }} is the [[Kronecker delta]], which equals {{math|+1}} if {{math|''j'' {{=}} ''k''}} and 0 otherwise. This expression is useful for "selecting" any one of the matrices numerically by substituting values of {{math|''j'' {{=}} 1, 2, 3,}} in turn useful when any of the matrices (but no particular one) is to be used in algebraic manipulations. The matrices are [[Involutory matrix|''involutory'']]: :<math>\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = -i\,\sigma_1 \sigma_2 \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I,</math> where {{mvar|I}} is the [[identity matrix]]. The [[determinant]]s and [[trace of a matrix|trace]]s of the Pauli matrices are :<math>\begin{align} \det \sigma_j &= -1, \\ \operatorname{tr} \sigma_j &= 0, \end{align}</math> from which we can deduce that each matrix {{mvar|σ{{sub|j}} }} has [[eigenvalues]] +1 and −1. With the inclusion of the identity matrix {{mvar|I}} (sometimes denoted {{math|''σ''{{sub|0}}}}), the Pauli matrices form an orthogonal basis (in the sense of [[Hilbert–Schmidt operator|Hilbert–Schmidt]]) of the [[Hilbert space]] <math>\mathcal{H}_2</math> of {{math|2 × 2}} Hermitian matrices over <math>\mathbb{R}</math>, and the Hilbert space <math>\mathcal{M}_{2,2}(\mathbb{C})</math> of all [[complex number|complex]] {{math|2 × 2}} matrices over <math>\mathbb{C}</math>. === Commutation and anti-commutation relations === ==== Commutation relations==== The Pauli matrices obey the following [[commutator|commutation]] relations: :<math>[\sigma_j, \sigma_k] = 2 i \varepsilon_{j k l}\,\sigma_l, </math> where the [[Levi-Civita symbol]] {{math|''ε{{sub|jkl}}''}} is used. These commutation relations make the Pauli matrices the generators of a representation of the Lie algebra <math>(\mathbb{R}^3, \times) \cong \mathfrak{su}(2) \cong \mathfrak{so}(3) .</math> ==== Anticommutation relations==== They also satisfy the [[anticommutator|anticommutation]] relations: :<math>\{\sigma_j, \sigma_k\} = 2 \delta_{j k}\,I,</math> where <math>\{\sigma_j, \sigma_k\}</math> is defined as <math>\sigma_j \sigma_k + \sigma_k \sigma_j,</math> and {{math|''δ{{sub|jk}}''}} is the [[Kronecker delta]]. {{mvar|I}} denotes the {{math|2 × 2}} identity matrix. These anti-commutation relations make the Pauli matrices the generators of a representation of the [[Clifford algebra]] for <math>\mathbb{R}^3,</math> denoted <math>\mathrm{Cl}_3(\mathbb{R}) .</math> The usual construction of generators <math>\sigma_{jk} = \tfrac{1}{4} [\sigma_j, \sigma_k]</math> of <math>\mathfrak{so}(3)</math> using the Clifford algebra recovers the commutation relations above, up to unimportant numerical factors. A few explicit commutators and anti-commutators are given below as examples: {| style="text-align:left;" ! Commutators ! Anticommutators |- | <math>\begin{align} \left[\sigma_1, \sigma_1\right] &= 0 \\ \left[\sigma_1, \sigma_2\right] &= 2i\sigma_3 \\ \left[\sigma_2, \sigma_3\right] &= 2i\sigma_1 \\ \left[\sigma_3, \sigma_1\right] &= 2i\sigma_2 \end{align}</math>{{quad}} | <math>\begin{align} \left\{\sigma_1, \sigma_1\right\} &= 2I \\ \left\{\sigma_1, \sigma_2\right\} &= 0 \\ \left\{\sigma_2, \sigma_3\right\} &= 0 \\ \left\{\sigma_3, \sigma_1\right\} &= 0 \end{align}</math> |} === Eigenvectors and eigenvalues === Each of the ([[Hermitian matrix|Hermitian]]) Pauli matrices has two [[eigenvalues]]: {{math|+1}} and {{math|−1}}. The corresponding [[Normalisable wavefunction|normalized]] [[eigenvectors]] are :<math>\begin{align} \psi_{x+} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, & \psi_{x-} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \\ \psi_{y+} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ i \end{bmatrix}, & \psi_{y-} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ -i \end{bmatrix}, \\ \psi_{z+} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & \psi_{z-} &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pauli matrices
(section)
Add topic