Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nuclear power
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== {{main|History of nuclear power}} ===Origins=== [[File:First four nuclear lit bulbs.jpeg|thumb|The first light bulbs ever lit by electricity generated by nuclear power at [[EBR-1]] at [[Argonne National Laboratory]]-West, December 20, 1951.<ref>{{cite web |title=Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology Legacy |url=https://www.ne.anl.gov/About/modern-day-alchemy/ |website=www.ne.anl.gov |access-date=24 March 2021}}</ref>]] The process of nuclear fission was discovered in 1938 after over four decades of work on the science of [[radioactivity]] and the elaboration of new [[nuclear physics]] that described the components of [[atom]]s. Soon after the discovery of the fission process, it was realized that neutrons released by a fissioning nucleus could, under the right conditions, induce fissions in nearby nuclei, thus initiating a [[nuclear chain reaction|self-sustaining chain reaction]].<ref name="Inside the Atomic Patent Office">{{cite journal | doi = 10.2968/064002008 | volume=64 | issue=2 | title=Inside the atomic patent office | year=2008 | journal=Bulletin of the Atomic Scientists | pages=26–31 | last1 = Wellerstein | first1 = Alex| bibcode=2008BuAtS..64b..26W |issn = 0096-3402 }}</ref> Once this was experimentally confirmed in 1939, scientists in many countries petitioned their governments for support for nuclear fission research, just on the cusp of [[World War II]], in order to develop a [[nuclear weapon]].<ref>{{cite web |url=http://www.atomicarchive.com/History/mp/introduction.shtml |title=The Einstein Letter |publisher=Atomicarchive.com |access-date=2013-06-22 |archive-date=2013-06-28 |archive-url=https://web.archive.org/web/20130628151924/http://www.atomicarchive.com/History/mp/introduction.shtml |url-status=live }}</ref> In the United States, these research efforts led to the creation of the first human-made [[nuclear reactor]], the [[Chicago Pile-1]] under the [[Stagg Field]] stadium at the [[University of Chicago]], which achieved [[Criticality (status)|criticality]] on December 2, 1942. The reactor's development was part of the [[Manhattan Project]], the [[Allies of World War II|Allied]] effort to create [[atomic bombs]] during World War II. It led to the building of larger single-purpose [[production reactor]]s for the production of [[weapons-grade plutonium]] for use in the first nuclear weapons. The United States tested the first nuclear weapon in July 1945, the [[Trinity test]], and the [[atomic bombings of Hiroshima and Nagasaki]] happened one month later. [[File:Nautiluscore.jpg|thumb| The launching ceremony of {{USS|Nautilus|SSN-571|6}} January 1954. In 1958 it would become the first vessel to reach the [[North Pole]].<ref>{{cite web |title=Nautilus (SSN-571) |url=https://www.history.navy.mil/browse-by-topic/ships/uss-nautilus.html |archive-url=https://web.archive.org/web/20150721063358/http://www.history.navy.mil/browse-by-topic/ships/uss-nautilus.html |url-status=dead |archive-date=July 21, 2015 |publisher=US Naval History and Heritage Command (US Navy)}}</ref>]] [[File:HD.15.019 (11823864155).jpg|thumb|The [[Calder Hall nuclear power station]] in the United Kingdom, the world's first commercial nuclear power station]] Despite the military nature of the first nuclear devices, there was strong optimism in the 1940s and 1950s that nuclear power could provide cheap and endless energy.<ref>{{cite book |last1=Wendt |first1=Gerald |last2=Geddes |first2=Donald Porter |title=The Atomic Age Opens |date=1945 |publisher=Pocket Books |location=New York |url=http://alsos.wlu.edu/information.aspx?id=279 |access-date=2017-11-03 |archive-date=2016-03-28 |archive-url=https://web.archive.org/web/20160328104803/http://alsos.wlu.edu/information.aspx?id=279 }}</ref> Electricity was generated for the first time by a nuclear reactor on December 20, 1951, at the [[EBR-I]] experimental station near [[Arco, Idaho]], which initially produced about 100{{nbsp}}[[kW]].<ref>{{cite web |url=http://www.ne.anl.gov/About/reactors/frt.shtml |title=Reactors Designed by Argonne National Laboratory: Fast Reactor Technology |publisher=U.S. Department of Energy, Argonne National Laboratory |year=2012 |access-date=2012-07-25 |archive-date=2021-04-18 |archive-url=https://web.archive.org/web/20210418094852/https://www.ne.anl.gov/About/reactors/frt.shtml |url-status=live }}</ref><ref>{{cite magazine| url=https://books.google.com/books?id=yNwDAAAAMBAJ&q=1954+Popular+Mechanics+January&pg=PA105 |title=Reactor Makes Electricity |magazine=Popular Mechanics |date= March 1952| page= 105|publisher=Hearst Magazines }}</ref> In 1953, American President [[Dwight Eisenhower]] gave his "[[Atoms for Peace]]" speech at the [[United Nations]], emphasizing the need to develop "peaceful" uses of nuclear power quickly. This was followed by the [[Atomic Energy Act of 1954]] which allowed rapid declassification of U.S. reactor technology and encouraged development by the private sector. ===First power generation=== The first organization to develop practical nuclear power was the [[United States Navy|U.S. Navy]], with the [[S1W reactor]] for the purpose of propelling [[submarine]]s and [[aircraft carrier]]s. The first nuclear-powered submarine, {{USS|Nautilus|SSN-571|6}}, was put to sea in January 1954.<ref name="iaeapdf" /><ref>{{cite web |url=http://www.ne.anl.gov/About/reactors/lwr3.shtml#fragment-2 |title=STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development" |publisher=U.S. Department of Energy, Argonne National Laboratory |year=2012 |access-date=2012-07-25 |archive-date=2012-06-22 |archive-url=https://web.archive.org/web/20120622185310/http://www.ne.anl.gov/About/reactors/lwr3.shtml#fragment-2 |url-status=live }}</ref> The S1W reactor was a [[pressurized water reactor]]. This design was chosen because it was simpler, more compact, and easier to operate compared to alternative designs, thus more suitable to be used in submarines. This decision would result in the PWR being the reactor of choice also for power generation, thus having a lasting impact on the civilian electricity market in the years to come.<ref>{{cite book|last=Rockwell|first=Theodore|title=The Rickover Effect|publisher=Naval Institute Press|year=1992|page=162|isbn=978-1-55750-702-0}}</ref> On June 27, 1954, the [[Obninsk Nuclear Power Plant]] in the [[USSR]] became the world's first nuclear power plant to generate electricity for a [[power grid]], producing around 5 megawatts of electric power.<ref name="IAEANews">{{cite web |url=http://www.iaea.org/NewsCenter/News/2004/obninsk.html |title=From Obninsk Beyond: Nuclear Power Conference Looks to Future |website=[[International Atomic Energy Agency]] |access-date=2006-06-27 |date=2004-06-23 |archive-date=2006-11-15 |archive-url=https://web.archive.org/web/20061115165641/http://www.iaea.org/NewsCenter/News/2004/obninsk.html |url-status=live }}</ref> The world's first commercial nuclear power station, [[Calder Hall nuclear power station|Calder Hall]] at Windscale, England was connected to the national power grid on 27 August 1956. In common with a number of other [[generation I reactor]]s, the plant had the dual purpose of producing [[electricity]] and [[plutonium-239]], the latter for the nascent [[Nuclear weapons and the United Kingdom|nuclear weapons program in Britain]].<ref>{{cite book |last1=Hill |first1=C. N. |title=An atomic empire: a technical history of the rise and fall of the British atomic energy programme |date=2013 |publisher=Imperial College Press |isbn=978-1-908977-43-4 |location=London, England}}</ref> ===Expansion and first opposition=== The total global installed nuclear capacity initially rose relatively quickly, rising from less than 1 [[gigawatt]] (GW) in 1960 to 100{{nbsp}}GW in the late 1970s.<ref name="iaeapdf">{{cite web |url=http://www.iaea.org/About/Policy/GC/GC48/Documents/gc48inf-4_ftn3.pdf |title=50 Years of Nuclear Energy |access-date=2006-11-09 |publisher=International Atomic Energy Agency |archive-date=2010-01-07 |archive-url=https://web.archive.org/web/20100107093607/http://www.iaea.org/About/Policy/GC/GC48/Documents/gc48inf-4_ftn3.pdf |url-status=live }}</ref> During the 1970s and 1980s rising economic costs (related to extended construction times largely due to regulatory changes and pressure-group litigation)<ref name="Bernard L. Cohen 1990">{{cite book |author=Bernard L. Cohen |date=1990 |title=The Nuclear Energy Option: An Alternative for the 90s |url=https://archive.org/details/nuclearenergyopt0000cohe |location=New York |publisher=Plenum Press |isbn=978-0-306-43567-6 |url-access=registration }}</ref> and falling fossil fuel prices made nuclear power plants then under construction less attractive. In the 1980s in the U.S. and 1990s in Europe, the flat electric grid growth and [[electricity liberalization]] also made the addition of large new [[baseload]] energy generators economically unattractive. The [[1973 oil crisis]] had a significant effect on countries, such as [[France]] and [[Japan]], which had relied more heavily on oil for electric generation to invest in nuclear power.<ref>{{cite web |author=Beder |first=Sharon |date=2006 |title=The Japanese Situation, English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity" |url=http://www.herinst.org/sbeder/privatisation/japan.html |url-status=live |archive-url=https://web.archive.org/web/20110317160509/http://www.herinst.org/sbeder/privatisation/japan.html |archive-date=2011-03-17 |access-date=2009-05-15 |publisher=Soshisha, Japan}}</ref> France would construct 25 nuclear power plants over the next 15 years,<ref name="palfreman">{{Cite news| last = Palfreman| first = Jon| title = Why the French Like Nuclear Energy| work = [[Frontline (U.S. TV series)|Frontline]]| publisher = [[Public Broadcasting Service]]| access-date = 25 August 2007| year = 1997| url = https://www.pbs.org/wgbh/pages/frontline/shows/reaction/readings/french.html| archive-date = 25 August 2007| archive-url = https://web.archive.org/web/20070825003225/http://www.pbs.org/wgbh/pages/frontline/shows/reaction/readings/french.html| url-status = live}}</ref><ref name="de preneuf">{{cite web |last=de Preneuf |first=Rene |title=Nuclear Power in France – Why does it Work? |url=http://www.npcil.nic.in/nupower_vol13_2/npfr_.htm |archive-url=https://web.archive.org/web/20070813233335/http://www.npcil.nic.in/nupower_vol13_2/npfr_.htm <!-- Bot retrieved archive --> |archive-date=13 August 2007 |access-date=25 August 2007}}</ref> and as of 2019, 71% of French electricity was generated by nuclear power, the highest percentage by any nation in the world.<ref name=":0" /> Some local opposition to nuclear power emerged in the United States in the early 1960s.<ref name="well">{{cite journal |author=Garb |first=Paula |year=1999 |title=Review of Critical Masses: Opposition to Nuclear Power in California, 1958–1978 |url=http://jpe.library.arizona.edu/volume_6/wellockvol6.htm |url-status=dead |journal=Journal of Political Ecology |volume=6 |archive-url=https://web.archive.org/web/20180601112114/http://jpe.library.arizona.edu/volume_6/wellockvol6.htm |archive-date=2018-06-01 |access-date=2011-03-14}}</ref> In the late 1960s, some members of the scientific community began to express pointed concerns.<ref name=wolfgang /> These [[anti-nuclear]] concerns related to [[nuclear accidents]], [[nuclear proliferation]], [[nuclear terrorism]] and [[High-level radioactive waste management|radioactive waste disposal]].<ref name="bm">{{cite journal |author=Martin |first=Brian |author-link=Brian Martin (social scientist) |date=2007 |title=Opposing nuclear power: past and present |url=http://www.bmartin.cc/pubs/07sa.html |url-status=live |journal=Social Alternatives |volume=26 |pages=43–47 |archive-url=https://web.archive.org/web/20190510124855/https://www.bmartin.cc/pubs/07sa.html |archive-date=2019-05-10 |access-date=2011-03-14 |number=2}}</ref> In the early 1970s, there were large protests about a proposed nuclear power plant in [[Wyhl]], Germany. The project was cancelled in 1975. The anti-nuclear success at Wyhl inspired opposition to nuclear power in other parts of Europe and North America.<ref name="pub">{{cite book |last1=Mills |first1=Stephen |url=https://books.google.com/books?id=SeMNAAAAQAAJ&q=%22public+acceptance+of+new+technologies%22 |title=Public acceptance of new technologies: an international review |last2=Williams |first2=Roger |date=1986 |publisher=Croom Helm |isbn=978-0-7099-4319-8 |location=London |pages=375–376}}</ref><ref name=got>Robert Gottlieb (2005). [https://books.google.com/books?id=lR0n6oqMNPkC&dq=transofrmation+of+the+american+environmental+gottlieb+revised&pg=PP1 Forcing the Spring: The Transformation of the American Environmental Movement], Revised Edition, Island Press, p. 237.</ref> By the mid-1970s [[anti-nuclear]] activism gained a wider appeal and influence, and nuclear power began to become an issue of major public protest.<ref name="jimfalk">{{cite book |last=Falk |first=Jim |url=https://archive.org/details/globalfissionbat00falk |title=Global Fission: The Battle Over Nuclear Power |date=1982 |publisher=Oxford University Press |isbn=978-0-19-554315-5 |location=Melbourne, Australia |pages=[https://archive.org/details/globalfissionbat00falk/page/95 95–96] |url-access=registration}}</ref><ref name="eleven">Walker, J. Samuel (2004). ''[https://books.google.com/books?id=tf0AfoynG-EC&q=Three+Mile+Island:+A+Nuclear+Crisis+in+Historical+Perspective Three Mile Island: A Nuclear Crisis in Historical Perspective] {{Webarchive|url=https://web.archive.org/web/20230323071157/https://books.google.com/books?id=tf0AfoynG-EC&q=Three+Mile+Island:+A+Nuclear+Crisis+in+Historical+Perspective|date=2023-03-23}}'' (Berkeley, California: University of California Press), pp. 10–11.</ref> In some countries, the [[Nuclear power debate|nuclear power conflict]] "reached an intensity unprecedented in the history of technology controversies".<ref name="marcuse.org">{{cite journal |author=Herbert P. Kitschelt |date=1986 |title=Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies |url=http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |journal=British Journal of Political Science |volume=16 |issue=1 |page=57 |doi=10.1017/s000712340000380x |s2cid=154479502 |access-date=2010-02-28 |archive-date=2010-08-21 |archive-url=https://web.archive.org/web/20100821195323/http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |url-status=live }}</ref><ref name="kits">{{cite journal |author=Kitschelt |first=Herbert P. |date=1986 |title=Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies |url=http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |url-status=live |journal=British Journal of Political Science |volume=16 |issue=1 |page=71 |doi=10.1017/s000712340000380x |s2cid=154479502 |archive-url=https://web.archive.org/web/20100821195323/http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |archive-date=2010-08-21 |access-date=2010-02-28}}</ref> The increased public hostility to nuclear power led to a longer license procurement process, more regulations and increased requirements for safety equipment, which made new construction much more expensive.<ref name="phyast.pitt.edu">{{cite web |title=Costs of Nuclear Power Plants – What Went Wrong? |url=http://www.phyast.pitt.edu/~blc/book/chapter9.html |website=www.phyast.pitt.edu |access-date=2007-12-04 |archive-date=2010-04-13 |archive-url=https://web.archive.org/web/20100413204335/http://www.phyast.pitt.edu/~blc/book/chapter9.html |url-status=live }}</ref><ref>{{cite news |last1=Ginn |first1=Vance |last2=Raia |first2=Elliott |date=August 18, 2017 |title=nuclear energy may soon be free from its tangled regulatory web |url=https://www.washingtonexaminer.com/nuclear-energy-may-soon-be-free-from-its-tangled-regulatory-web |url-status=live |archive-url=https://web.archive.org/web/20190106204903/https://www.washingtonexaminer.com/nuclear-energy-may-soon-be-free-from-its-tangled-regulatory-web |archive-date=January 6, 2019 |access-date=January 6, 2019 |work=Washington Examiner}}</ref> In the United States, over [[List of cancelled nuclear reactors in the United States|120 Light Water Reactor proposals were ultimately cancelled]]<ref>{{cite web | url=https://fas.org/sgp/crs/misc/RL33442.pdf | title=Nuclear Power: Outlook for New U.S. Reactors | page=3 | access-date=2015-10-18 | archive-date=2015-09-24 | archive-url=https://web.archive.org/web/20150924134344/http://www.fas.org/sgp/crs/misc/RL33442.pdf | url-status=live }}</ref> and the construction of new reactors ground to a halt.<ref name="ReferenceA">{{cite journal |date=1985-02-11 |title=Nuclear Follies |journal=Forbes Magazine|last=Cook|first=James}}</ref> The 1979 [[Three Mile Island accident|accident at Three Mile Island]] with no fatalities, played a major part in the reduction in the number of new plant constructions in many countries.<ref name="wolfgang">{{cite book |url=https://books.google.com/books?id=ZXwfAQAAIAAJ |title=Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy |publisher=Longman Current Affairs |year=1990 |isbn=978-0-8103-9000-3 |editor1-last=Rüdig |editor1-first=Wolfgang |location=Detroit, Michigan |page=1 |language=en-us}}</ref> ===Chernobyl and renaissance=== [[File:Центр города Припять на фоне 4 энергоблокаа ЧАЭС.jpg|thumb|The town of [[Pripyat (city)|Pripyat]] abandoned since 1986, with the Chernobyl plant and the [[Chernobyl New Safe Confinement]] arch in the distance]] [[File:OL3.jpg|thumb|[[Olkiluoto 3]] under construction in 2009. It was the first [[EPR (nuclear reactor)|EPR]], a modernized PWR design, to start construction. ]] During the 1980s one new nuclear reactor started up every 17 days on average.<ref>{{cite book |last1=Thorpe |first1=Gary S. |title=AP Environmental Science, 6th ed. |date=2015 |publisher=Barrons Educational Series |isbn=978-1-4380-6728-5}} {{ISBN|1-4380-6728-3}}</ref> By the end of the decade, global installed nuclear capacity reached 300{{nbsp}}GW. Since the late 1980s, new capacity additions slowed significantly, with the installed nuclear capacity reaching 366{{nbsp}}GW in 2005. The 1986 [[Chernobyl disaster]] in the [[USSR]], involving an [[RBMK]] reactor, altered the development of nuclear power and led to a greater focus on meeting international safety and regulatory standards.<ref>{{cite web|url=https://www.iaea.org/newscenter/focus/chernobyl|title=Chernobyl Nuclear Accident|date=14 May 2014|website=www.iaea.org|publisher=IAEA|access-date=23 March 2021|archive-date=11 June 2008|archive-url=https://web.archive.org/web/20080611102751/http://www.iaea.org/NewsCenter/Focus/Chernobyl/|url-status=live}}</ref> It is considered the worst nuclear disaster in history both in total casualties, with 56 direct deaths, and financially, with the cleanup and the cost estimated at 18{{nbsp}}billion{{nbsp}}[[Soviet rouble|Rbl]]s (US$68{{nbsp}}billion in 2019, adjusted for inflation).<ref name="OECD02-Ch2">{{cite web|url=https://www.oecd-nea.org/rp/reports/2003/nea3508-chernobyl.pdf|title=Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter II – The release, dispersion and deposition of radionuclides|year=2002|publisher=OECD-NEA|access-date=3 June 2015|archive-url=https://web.archive.org/web/20150622010856/https://www.oecd-nea.org/rp/reports/2003/nea3508-chernobyl.pdf|archive-date=22 June 2015|url-status=live}}</ref><ref name="GorbachevBoC">{{cite AV media |url=https://www.andanafilms.com/catalogueFiche.php?idFiche=255&rub=Toutes%20les%20fiches%20films |title=The battle of Chernobyl |date=2006 |publisher=Play Film / Discovery Channel |access-date=2021-03-23 |archive-url=https://web.archive.org/web/20210307205137/https://www.andanafilms.com/catalogueFiche.php?idFiche=255&rub=Toutes%20les%20fiches%20films |archive-date=2021-03-07 |url-status=live |people=Johnson, Thomas (author/director)}} (see 1996 interview with Mikhail Gorbachev.)</ref> The international organization to promote safety awareness and the professional development of operators in nuclear facilities, the [[World Association of Nuclear Operators]] (WANO), was created as a direct outcome of the 1986 Chernobyl accident. The Chernobyl disaster played a major part in the reduction in the number of new plant constructions in the following years.<ref name=wolfgang/> Influenced by these events, Italy voted against nuclear power in a 1987 referendum,<ref>{{Cite book |last=Sassoon |first=Donald |url=https://books.google.com/books?id=W8K3AwAAQBAJ&dq=Italy+voted+against+nuclear+power+in+a+1987+referendum&pg=PT179 |title=Contemporary Italy: Politics, Economy and Society Since 1945 |date=2014-06-03 |publisher=Routledge |isbn=978-1-317-89377-6 |language=en}}</ref> becoming the first country to completely phase out nuclear power in 1990. In the early 2000s, nuclear energy was expecting a [[nuclear renaissance]], an increase in the construction of new reactors, due to concerns about [[carbon dioxide emissions]].<ref name=":1">{{cite news |date=2011-03-14 |title=Analysis: Nuclear renaissance could fizzle after Japan quake |work=Reuters |url=https://www.reuters.com/article/us-japan-quake-nuclear-analysis-idUSTRE72C41W20110314 |access-date=2011-03-14 |archive-date=2015-12-08 |archive-url=https://web.archive.org/web/20151208211554/http://www.reuters.com/article/us-japan-quake-nuclear-analysis-idUSTRE72C41W20110314 |url-status=live }}</ref> During this period, newer [[generation III reactor]]s, such as the [[EPR (nuclear reactor)|EPR]] began construction. {{clear}} <gallery mode="packed" heights="130px" style="text-align:left"> Global electricity generation by energy source.png|Net [[electrical generation]] by source and growth from 1980. In terms of energy generated between 1980 and 2010, the contribution from fission grew the fastest. Electricity in France.svg|[[Electricity sector in France|Electricity production in France]], showing the shift to nuclear power. {{legend|#D55E00|thermofossil}}{{legend|#0072B2|hydroelectric}}{{legend|#F0E442|nuclear}}{{legend|#009E73|Other renewables}} Nuclear-energy-timeline.svg|The rate of new reactor constructions essentially halted in the late 1980s. Increased [[capacity factor]] in existing reactors was primarily responsible for the continuing increase in electrical energy produced during this period. Nuclear power generation in different countries.svg|Electricity generation trends in the top producing countries (Our World in Data) </gallery> ===Fukushima accident=== {{Image frame |width = 520 |align=right |pos=bottom |content={{Graph:Chart | width = 180 | height = 150 | type=area | interpolate=step-before | y= 2263.79 , 2298.27 , 2378.93 , 2443.85 , 2511.09 , 2553.18 , 2504.78 , 2616.24 , 2626.34 , 2660.85 , 2608.18 , 2597.81 , 2558.06 , 2629.82 , 2517.98 , 2346.19 , 2358.86 , 2410.37 , 2441.33 , 2477.30 , 2502.82 , 2562.76 , 2586.16 | xAxisTitle=Year | xAxisAngle = -45 | xType=date | yType=number | yAxisTitle=Generation (TWh) | x = 1997 ,1998 ,1999 , 2000 ,2001 ,2002 ,2003 ,2004 , 2005 ,2006 ,2007 ,2008 ,2009 , 2010 ,2011 ,2012 ,2013 ,2014 , 2015 , 2016, 2017, 2018, 2019 }}{{Graph:Chart | width = 180 | height = 150 | type=area | interpolate=step-before | y = 441 , 438 , 434 , 438 , 438 , 444 , 443 , 443 , 443 , 443 , 439 , 439 , 440 , 442 , 448 , 440 , 441 , 439 , 448 , 451 , 451 , 457 , 456 | xAxisTitle=Year | xAxisAngle = -45 | xType=date | yType=number | yAxisTitle=Number of reactors | x = 1997 ,1998 ,1999 , 2000 ,2001 ,2002 ,2003 ,2004 , 2005 ,2006 ,2007 ,2008 ,2009 , 2010 ,2011 ,2012 ,2013 ,2014 , 2015 , 2016, 2017, 2018, 2019 }} |caption = Nuclear power generation (TWh) and operational nuclear reactors since 1997<ref name="pris-supplied">{{cite web |url=https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx |title=Trend in Electricity Supplied |publisher=International Atomic Energy Agency |access-date=2021-01-09 |archive-date=2021-01-11 |archive-url=https://web.archive.org/web/20210111090143/https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx |url-status=live }}</ref> }} Prospects of a nuclear renaissance were delayed by another nuclear accident.<ref name=":1" /><ref name=carbonbrief_2016>{{cite news |title=Analysis: The legacy of the Fukushima nuclear disaster |url=https://www.carbonbrief.org/analysis-the-legacy-of-the-fukushima-nuclear-disaster |access-date=24 March 2021 |work=Carbon Brief |date=10 March 2016 |language=en |archive-date=8 March 2021 |archive-url=https://web.archive.org/web/20210308035109/https://www.carbonbrief.org/analysis-the-legacy-of-the-fukushima-nuclear-disaster |url-status=live }}</ref> The 2011 [[Fukushima Daiichi nuclear accident]] was caused by the [[2011 Tōhoku earthquake and tsunami|Tōhoku earthquake and tsunami]], one of the largest earthquakes ever recorded. The [[Fukushima Daiichi Nuclear Power Plant]] suffered three core meltdowns due to failure of the emergency cooling system for lack of electricity supply. This resulted in the most serious nuclear accident since the Chernobyl disaster. The accident prompted a re-examination of [[nuclear safety]] and [[nuclear energy policy]] in many countries.<ref name="sciamer2011">{{cite journal |last1=Westall |first1=Sylvia |last2=Dahl |first2=Fredrik |name-list-style=amp |date=2011-06-24 |title=IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety |url=http://www.scientificamerican.com/article.cfm?id=iaea-head-sees-wide-support |url-status=dead |journal=Scientific American |archive-url=https://archive.today/20110625042535/http://www.scientificamerican.com/article.cfm?id=iaea-head-sees-wide-support |archive-date=2011-06-25 |accessdate=2011-06-25}}</ref> Germany approved plans to close all its reactors by 2022, and many other countries reviewed their nuclear power programs.<ref>{{cite news |author=Chandler |first=Jo |author-link=Jo Chandler |date=2011-03-19 |title=Is this the end of the nuclear revival? |url=https://www.smh.com.au/world/is-this-the-end-of-the-nuclear-revival-20110318-1c0i9.html |url-status=live |archive-url=https://web.archive.org/web/20200510043432/https://www.smh.com.au/environment/sustainability/is-this-the-end-of-the-nuclear-revival-20110318-1c0i9.html |archive-date=2020-05-10 |access-date=2020-02-20 |newspaper=The Sydney Morning Herald |publication-place=Sydney, Australia}}</ref><ref>{{cite news |author=Belford |first=Aubrey |date=2011-03-17 |title=Indonesia to Continue Plans for Nuclear Power |url=https://www.nytimes.com/2011/03/18/business/global/18atomic.html?partner=rss&emc=rss |url-status=live |archive-url=https://web.archive.org/web/20200510043432/https://www.nytimes.com/2011/03/18/business/global/18atomic.html?partner=rss&emc=rss |archive-date=2020-05-10 |access-date=2017-02-25 |newspaper=The New York Times}}</ref><ref name="piersmorgan.blogs.cnn.com">{{cite news |author=Morgan |first=Piers |date=2011-03-17 |title=Israel Prime Minister Netanyahu: Japan situation has "caused me to reconsider" nuclear power |url=http://piersmorgan.blogs.cnn.com/2011/03/17/israel-prime-minister-netanyahu-japan-situation-has-caused-me-to-reconsider-nuclear-power/ |url-status=dead |archive-url=https://web.archive.org/web/20190930221401/http://piersmorgan.blogs.cnn.com/2011/03/17/israel-prime-minister-netanyahu-japan-situation-has-caused-me-to-reconsider-nuclear-power/ |archive-date=2019-09-30 |access-date=2011-03-17 |work=CNN}}</ref><ref name="news.xinhuanet.com">{{cite news|url=http://news.xinhuanet.com/english2010/world/2011-03/18/c_13784578.htm |archive-url=https://web.archive.org/web/20110318184804/http://news.xinhuanet.com/english2010/world/2011-03/18/c_13784578.htm |archive-date=March 18, 2011 |title=Israeli PM cancels plan to build nuclear plant|work= xinhuanet.com|date=2011-03-18| access-date= 2011-03-17}}</ref> Following the disaster, Japan shut down all of its nuclear power reactors, some of them permanently, and in 2015 began a gradual process to restart the remaining 40 reactors, following safety checks and based on revised criteria for operations and public approval.<ref>{{cite web |url=http://www.kyuden.co.jp/en_information_150811.html |title=Startup of Sendai Nuclear Power Unit No.1 |date=2015-08-11 |website=Kyushu Electric Power Company Inc. |access-date=2015-08-12 |archive-url=https://web.archive.org/web/20170525170529/http://www.kyuden.co.jp/en_information_150811.html |archive-date=2017-05-25 |url-status=dead }}</ref> In 2022, the Japanese government, under the leadership of Prime Minister [[Fumio Kishida]], declared that 10 more nuclear power plants were to be reopened since the 2011 disaster.<ref>{{cite news |date=24 August 2022 |title=Japan turns back to nuclear power in post-Fukushima shift |url=https://www.ft.com/content/b380cb74-7b2e-493f-be99-281bd0dd478f |url-status=live |archive-url=https://web.archive.org/web/20220930125230/https://www.ft.com/content/b380cb74-7b2e-493f-be99-281bd0dd478f |archive-date=30 September 2022 |access-date=November 15, 2022 |newspaper=Financial Times |location=London, England}}</ref> Kishida is also pushing for research and construction of new safer nuclear plants to safeguard Japanese consumers from the fluctuating price of the fossil fuel market and reduce Japan's greenhouse gas emissions.<ref name="auto">{{cite web|url=https://reason.com/2022/08/25/japan-is-reopening-nuclear-power-plants-and-planning-to-build-new-ones/|title=Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones|date=August 25, 2022|access-date=November 26, 2022|archive-date=November 15, 2022|archive-url=https://web.archive.org/web/20221115142242/https://reason.com/2022/08/25/japan-is-reopening-nuclear-power-plants-and-planning-to-build-new-ones/|url-status=live}}</ref> Kishida intends to have Japan become a significant exporter of nuclear energy and technology to developing countries around the world.<ref name="auto"/> === Current prospects === By 2015, the IAEA's outlook for nuclear energy had become more promising, recognizing the importance of low-carbon generation for mitigating [[climate change]].<ref>{{cite web|url=http://www.iea.org/newsroomandevents/news/2015/january/taking-a-fresh-look-at-the-future-of-nuclear-power.html|title=January: Taking a fresh look at the future of nuclear power|website=www.iea.org|access-date=2016-04-18|archive-date=2016-04-05|archive-url=https://web.archive.org/web/20160405120522/http://www.iea.org/newsroomandevents/news/2015/january/taking-a-fresh-look-at-the-future-of-nuclear-power.html|url-status=live}}</ref> {{As of|2015}}, the global trend was for new nuclear power stations coming online to be balanced by the number of old plants being retired.<ref>{{cite web |publisher=[[World Nuclear Association]] |url=http://www.world-nuclear.org/info/current-and-future-generation/plans-for-new-reactors-worldwide/ |title=Plans for New Reactors Worldwide |date=October 2015 |access-date=2016-01-05 |archive-date=2016-01-31 |archive-url=https://web.archive.org/web/20160131214224/http://www.world-nuclear.org/info/Current-and-Future-Generation/Plans-For-New-Reactors-Worldwide/ |url-status=live }}</ref> In 2016, the [[U.S. Energy Information Administration]] projected for its "base case" that world nuclear power generation would increase from 2,344 [[terawatt hour]]s (TWh) in 2012 to 4,500{{nbsp}}TWh in 2040. Most of the predicted increase was expected to be in Asia.<ref>{{cite web | url=http://www.eia.gov/forecasts/aeo/data/browser/#/?id=31-IEO2016&sourcekey=0 | title=International Energy outlook 2016 | publisher=US Energy Information Administration | access-date=17 August 2016 | archive-date=15 August 2016 | archive-url=https://web.archive.org/web/20160815223701/http://www.eia.gov/forecasts/aeo/data/browser/#/?id=31-IEO2016&sourcekey=0 | url-status=live }}</ref> As of 2018, there were over 150 nuclear reactors planned including 50 under construction.<ref>{{Cite web|title=Plans for New Nuclear Reactors Worldwide|url=http://www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx|access-date=2018-09-29|website=www.world-nuclear.org|publisher=World Nuclear Association|archive-date=2018-09-28|archive-url=https://web.archive.org/web/20180928230742/http://world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx|url-status=live}}</ref> In January 2019, China had 45 reactors in operation, 13 under construction, and planned to build 43 more, which would make it the world's largest generator of nuclear electricity.<ref name="china19">{{cite magazine |date=12 January 2019 |title=Can China become a scientific superpower? – The great experiment |url=https://www.economist.com/science-and-technology/2019/01/12/can-china-become-a-scientific-superpower |url-status=live |archive-url=https://web.archive.org/web/20190125020045/https://www.economist.com/science-and-technology/2019/01/12/can-china-become-a-scientific-superpower |archive-date=25 January 2019 |access-date=25 January 2019 |magazine=The Economist}}</ref> As of 2021, 17 reactors were reported to be under construction. China built significantly fewer reactors than originally planned. Its share of electricity from nuclear power was 5% in 2019<ref name="dwfrance">{{cite news |title=A global nuclear phaseout or renaissance? {{!}} DW {{!}} 04.02.2021 |url=https://www.dw.com/en/germany-looking-for-final-repository-for-nuclear-waste-global-outlook/a-56449115 |access-date=25 November 2021 |work=Deutsche Welle (www.dw.com) |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125101423/https://www.dw.com/en/germany-looking-for-final-repository-for-nuclear-waste-global-outlook/a-56449115 |url-status=live }}</ref> and observers have cautioned that, along with the risks, the changing economics of energy generation may cause new nuclear energy plants to "no longer make sense in a world that is leaning toward cheaper, more reliable renewable energy".<ref name="cnnchina">{{cite news |last1=Griffiths |first1=James |title=China's gambling on a nuclear future, but is it destined to lose? |url=https://edition.cnn.com/2019/09/13/business/china-nuclear-climate-intl-hnk/index.html |access-date=25 November 2021 |work=CNN |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125101428/https://edition.cnn.com/2019/09/13/business/china-nuclear-climate-intl-hnk/index.html |url-status=live }}</ref><ref name="francere">{{cite news |title=Building new nuclear plants in France uneconomical -environment agency |url=https://www.reuters.com/article/france-nuclearpower/building-new-nuclear-plants-in-france-uneconomical-environment-agency-idUSL8N1YF5HC |access-date=25 November 2021 |work=Reuters |date=10 December 2018 |language=en |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145227/https://www.reuters.com/article/france-nuclearpower/building-new-nuclear-plants-in-france-uneconomical-environment-agency-idUSL8N1YF5HC |url-status=live }}</ref> In October 2021, the Japanese cabinet approved the new Plan for Electricity Generation to 2030 prepared by the Agency for Natural Resources and Energy (ANRE) and an advisory committee, following public consultation. The nuclear target for 2030 requires the restart of another ten reactors. Prime Minister [[Fumio Kishida]] in July 2022 announced that the country should consider building advanced reactors and extending operating licences beyond 60 years.<ref>{{cite web|title=Nuclear Power in Japan|url=https://world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-power.aspx|author=World Nuclear Association|access-date=2022-09-12|archive-date=2020-04-01|archive-url=https://web.archive.org/web/20200401112727/http://world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-power.aspx|url-status=live}}</ref> As of 2022, with world oil and gas prices on the rise, while Germany is restarting its coal plants to deal with loss of Russian gas that it needs to supplement its {{lang|de|[[Energiewende]]}},<ref>{{cite news| url=https://www.reuters.com/business/energy/germanys-uniper-bring-coal-fired-power-plant-heyden-4-back-onto-electricity-2022-08-22/| title=Germany's Uniper to restart coal-fired power plant as Gazprom halts supply to Europe| date=22 August 2022| publisher=Reuters| access-date=2022-09-12| archive-date=2022-09-09| archive-url=https://web.archive.org/web/20220909205007/https://www.reuters.com/business/energy/germanys-uniper-bring-coal-fired-power-plant-heyden-4-back-onto-electricity-2022-08-22/| url-status=live}}</ref> many other countries have announced ambitious plans to reinvigorate ageing nuclear generating capacity with new investments. French President [[Emmanuel Macron]] announced his intention to build six new reactors in coming decades, placing nuclear at the heart of France's drive for [[carbon neutrality]] by 2050.<ref>{{cite news |url = https://www.reuters.com/business/energy/macron-bets-nuclear-carbon-neutrality-push-announces-new-reactors-2022-02-10/ |publisher = Reuters |title = Macron bets on nuclear in carbon-neutrality push, announces new reactors |date = 10 February 2022 |access-date = 2022-09-12 |archive-date = 2022-09-14 |archive-url = https://web.archive.org/web/20220914080529/https://www.reuters.com/business/energy/macron-bets-nuclear-carbon-neutrality-push-announces-new-reactors-2022-02-10/ |url-status = live }}</ref> Meanwhile, in the United States, the [[Department of Energy]], in collaboration with commercial entities, [[TerraPower]] and [[X-energy]], is planning on building two different advanced nuclear reactors by 2027, with further plans for nuclear implementation in its long term green energy and energy security goals.<ref>{{cite news |url = https://www.science.org/content/article/department-energy-picks-two-advanced-nuclear-reactors-demonstration-projects |publisher = Science.org |title = Department of Energy picks two advanced nuclear reactors for demonstration projects, announces new reactors |date = 16 October 2020 |access-date = 3 March 2023 |archive-date = 24 February 2023 |archive-url = https://web.archive.org/web/20230224021201/https://www.science.org/content/article/department-energy-picks-two-advanced-nuclear-reactors-demonstration-projects |url-status = live }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nuclear power
(section)
Add topic