Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nowhere dense set
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Density nowhere can be characterized in different (but equivalent) ways. The simplest definition is the one from density: <blockquote>A subset <math>S</math> of a [[topological space]] <math>X</math> is said to be '''''dense''''' in another set <math>U</math> if the intersection <math>S \cap U</math> is a [[Dense set|dense subset]] of <math>U.</math> <math>S</math> is '''{{em|nowhere dense}}''' or '''{{em|rare}}''' in <math>X</math> if <math>S</math> is not dense in any nonempty open subset <math>U</math> of <math>X.</math> </blockquote> Expanding out the negation of density, it is equivalent that each nonempty open set <math>U</math> contains a nonempty open subset disjoint from <math>S.</math>{{sfn|Fremlin|2002|loc=3A3F(a)}} It suffices to check either condition on a [[Base (topology)|base]] for the topology on <math>X.</math> In particular, density nowhere in <math>\R</math> is often described as being dense in no [[Open Interval|open interval]].<ref>{{Cite book|last=Oxtoby|first=John C.|title=Measure and Category|publisher=Springer-Verlag|year=1980|isbn=0-387-90508-1|edition=2nd|location=New York|pages=1β2|quote=A set is nowhere dense if it is dense in no interval}}; although note that Oxtoby later gives the interior-of-closure definition on page 40.</ref><ref>{{Cite book|last=Natanson|first=Israel P.|url=http://hdl.handle.net/2027/mdp.49015000681685|title=Teoria functsiy veshchestvennoy peremennoy|publisher=Frederick Ungar|year=1955|volume=I (Chapters 1-9)|location=New York|pages=88|hdl=2027/mdp.49015000681685|language=English|translator-last=Boron|translator-first=Leo F.|trans-title=Theory of functions of a real variable|lccn=54-7420}}</ref> === Definition by closure === The second definition above is equivalent to requiring that the closure, <math>\operatorname{cl}_X S,</math> cannot contain any nonempty open set.<ref>{{Cite book|last1=Steen|first1=Lynn Arthur|title=Counterexamples in Topology|last2=Seebach Jr.|first2=J. Arthur|publisher=Dover|year=1995|isbn=978-0-486-68735-3|edition=Dover republication of Springer-Verlag 1978|location=New York|pages=7|quote=A subset <math>A</math> of <math>X</math> is said to be nowhere dense in <math>X</math> if no nonempty open set of <math>X</math> is contained in <math>\overline{A}.</math>}}</ref> This is the same as saying that the [[interior (topology)|interior]] of the [[Closure (topology)|closure]] of <math>S</math> is empty; that is,<blockquote><math>\operatorname{int}_X \left(\operatorname{cl}_X S\right) = \varnothing.</math><ref name=":0">{{Cite book|last=Gamelin|first=Theodore W.|title=Introduction to Topology|publisher=Dover|year=1999|isbn=0-486-40680-6|edition=2nd|location=Mineola|pages=36β37|via=ProQuest ebook Central}}</ref>{{sfn|Rudin|1991|p=41}} </blockquote>Alternatively, the complement of the closure <math>X \setminus \left(\operatorname{cl}_X S\right)</math> must be a dense subset of <math>X;</math>{{sfn|Fremlin|2002|loc=3A3F(a)}}<ref name=":0" /> in other words, the [[exterior (topology)|exterior]] of <math>S</math> is dense in <math>X.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nowhere dense set
(section)
Add topic