Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mode volume
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==In electromagnetic cavities== The mode volume (or modal volume) of an optical or microwave cavity is a measure of how concentrated the [[Electromagnetic energy density|electromagnetic energy]] of a single [[Mode (electromagnetism)|cavity mode]] is in space, expressed as an effective volume in which most of the energy associated with an electromagentic mode is confined. Various expressions may be used to estimate this volume:<ref>{{Cite web |title=Calculating the modal volume of a cavity mode |url=https://optics.ansys.com/hc/en-us/articles/360034395374-Calculating-the-modal-volume-of-a-cavity-mode |archive-url=https://web.archive.org/web/20220817165833/https://optics.ansys.com/hc/en-us/articles/360034395374-Calculating-the-modal-volume-of-a-cavity-mode |archive-date=17 August 2022 |access-date=13 September 2024 |website=[[Ansys|Ansys Optics]]}}</ref><ref>{{Cite thesis |last=Kippenberg |first=Tobias Jan August |title=Nonlinear Optics in Ultra-High-Q Whispering-Gallery Optical Microcavities |date=2004 |degree=phd |publisher=California Institute of Technology |url=https://thesis.library.caltech.edu/2487/ |doi=10.7907/t5b6-9r14 |language=en}}</ref> * The volume that would be occupied by the mode if its electromagnetic energy density was constant and equal to its maximum value <math display="block"> V_{m} = \frac{\int \epsilon |E|^{2} dV}{\rm{max}(\epsilon |E|^{2})} \;\;\; \rm{or} \;\;\; V_{m} = \frac{\int (|B|^{2}/\mu) \; dV}{\rm{max}(|B|^{2}/\mu )} </math> * The volume over which the electromagnetic energy density exceeds some threshold (e.g., half the maximum energy density) <math display="block"> V_{m} = \int \left(|E|^{2} > \frac{|E_{max}|^{2}}{2}\right) dV </math> * The volume that would be occupied by the mode if its electromagnetic energy density was constant and equal to a weighted average value that emphasises higher energy densities. <math display="block"> V_{m} = \frac{(\int |E|^{2} dV)^{2}}{\int |E|^{4} dV} \;\;\; \rm{or} \;\;\; V_{m} = \frac{(\int |B|^{2} dV)^{2}}{\int |B|^{4} dV} </math> where <math>E</math> is the [[Electric field|electric field strength]], <math>B</math> is the [[magnetic flux density]], <math>\epsilon</math> is the [[electric permittivity]], <math>\mu</math> denotes the [[Permeability (electromagnetism)|magnetic permeability]], and <math>\max(\cdots)</math> denotes the maximum value of its functional argument. In each definition the integral is over all space and may diverge in leaky cavities where the electromagnetic energy can radiate out to infinity and is thus not is not confined within the cavity volume.<ref>{{Cite web |last=Meldrum |first=A |title=Lesson 5: Whispering Gallery Modes |url=https://sites.ualberta.ca/~ameldrum/science/science5a.html |access-date=2024-12-19 |website=sites.ualberta.ca}}</ref> In this case modifications to the expressions above may be required to give an effective mode volume.<ref>{{Cite journal |last=Kristensen |first=P. T. |last2=Van Vlack |first2=C. |last3=Hughes |first3=S. |date=2012-05-15 |title=Generalized effective mode volume for leaky optical cavities |url=https://opg.optica.org/ol/abstract.cfm?uri=ol-37-10-1649 |journal=Optics Letters |language=en |volume=37 |issue=10 |pages=1649 |doi=10.1364/OL.37.001649 |issn=0146-9592|arxiv=1107.4601 }}</ref> The mode volume of a cavity or resonator is of particular importance in [[cavity quantum electrodynamics]]<ref>{{Cite journal |last=Kimble |first=H. J. |date=1998 |title=Strong Interactions of Single Atoms and Photons in Cavity QED |url=https://iopscience.iop.org/article/10.1238/Physica.Topical.076a00127 |journal=Physica Scripta |language=en |volume=T76 |issue=1 |pages=127 |doi=10.1238/Physica.Topical.076a00127 |issn=0031-8949}}</ref> where it determines the magnitude<ref>{{Cite journal |last=Purcell |first=E. M. |author-link=Edward Mills Purcell |date=1946-06-01 |title=Proceedings of the American Physical Society: B10. Spontaneous Emission Probabilities at Radio Frequencies |url=https://link.aps.org/doi/10.1103/PhysRev.69.674.2 |journal=Physical Review |language=en |volume=69 |issue=11-12 |pages=674β674 |doi=10.1103/PhysRev.69.674.2 |issn=0031-899X}}</ref><ref>{{Cite journal |last=Boroditsky |first=M. |last2=Coccioli |first2=R. |last3=Yablonovitch |first3=E. |last4=Rahmat-Samii |first4=Y. |last5=Kim |first5=K.W. |date=1998-12-01 |title=Smallest possible electromagnetic mode volume in a dielectric cavity |url=https://digital-library.theiet.org/content/journals/10.1049/ip-opt_19982468 |journal=IEE Proceedings - Optoelectronics |language=en |volume=145 |issue=6 |pages=391β397 |doi=10.1049/ip-opt:19982468 |issn=1350-2433}}</ref><ref>{{Cite web |last=Chen |first=Tom |title=Calculating cavity quality factor, effective mode volume, and Purcell factor in Tidy3D Flexcompute |url=https://www.flexcompute.com/tidy3d/examples/notebooks/CavityFOM/ |access-date=2024-12-19 |website=www.flexcompute.com |language=en}}</ref> of the [[Purcell effect]] and coupling strength between cavity photons and atoms in the cavity.<ref>{{Cite journal |last=Srinivasan |first=Kartik |last2=Borselli |first2=Matthew |last3=Painter |first3=Oskar |last4=Stintz |first4=Andreas |last5=Krishna |first5=Sanjay |date=2006 |title=Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots |url=https://opg.optica.org/oe/viewmedia.cfm?uri=oe-14-3-1094&html=true |journal=Optics Express |language=en |volume=14 |issue=3 |pages=1094 |doi=10.1364/OE.14.001094 |issn=1094-4087|arxiv=physics/0511153 }}</ref><ref>{{Cite journal |last=Yoshie |first=T. |last2=Scherer |first2=A. |last3=Hendrickson |first3=J. |last4=Khitrova |first4=G. |last5=Gibbs |first5=H. M. |last6=Rupper |first6=G. |last7=Ell |first7=C. |last8=Shchekin |first8=O. B. |last9=Deppe |first9=D. G. |date= |title=Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity |url=https://www.nature.com/articles/nature03119 |journal=Nature |language=en |volume=432 |issue=7014 |pages=200β203 |doi=10.1038/nature03119 |issn=0028-0836}}</ref> In particular, the Purcell factor is given by : <math>F_{\rm P} = \frac{3}{4\pi^2}\left(\frac{\lambda_{\rm free}}{n}\right)^3 \frac{Q}{V_m}\,,</math> where <math>\lambda_{\rm free}</math> is the [[vacuum]] [[wavelength]], <math>n</math> is the [[refractive index]] of the cavity material (so <math>\lambda_{\rm free}/n</math> is the wavelength inside the cavity), and <math>Q</math> and <math>V_m</math> are the cavity [[quality factor]] and mode volume, respectively.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mode volume
(section)
Add topic