Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mirror galvanometer
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Kelvin's galvanometer == The mirror galvanometer was improved significantly by [[William Thomson, 1st Baron Kelvin|William Thomson]], later to become Lord Kelvin. He coined the term ''mirror galvanometer'' and patented the device in 1858. Thomson intended the instrument to read weak signal [[current (electricity)|current]]s on very long [[submarine telegraph cable]]s.<ref name=Lindley132133/> This instrument was far more [[sensitivity (electronics)|sensitive]] than any which preceded it, enabling the detection of the slightest defect in the core of a cable during its manufacture and submersion. Thomson decided that he needed an extremely sensitive instrument after he took part in the failed attempt to lay a [[transatlantic telegraph cable]] in 1857. He worked on the device while waiting for a new expedition the following year. He first looked at improving a galvanometer used by [[Hermann von Helmholtz]] to measure the speed of nerve signals in 1849. Helmholtz's galvanometer had a mirror fixed to the moving needle, which was used to project a beam of light onto the opposite wall, thus greatly amplifying the signal. Thomson intended to make this more sensitive by reducing the mass of the moving parts, but in a flash of inspiration while watching the light reflected from his [[monocle]] suspended around his neck, he realised that he could dispense with the needle and its mounting altogether. He instead used a small piece of mirrored glass with a small piece of magnetised steel glued on the back. This was suspended by a thread in the magnetic field of the fixed sensing coil. In a hurry to try the idea, Thomson first used a hair from his dog, but later used a silk thread from the dress of his niece Agnes.<ref name=Lindley132133>Lindley, David, ''Degrees Kelvin: A Tale of Genius, Invention, and Tragedy'', pp. 132β133, Joseph Henry Press, 2004 {{ISBN|0309167825}}.</ref> The following is adapted from a contemporary account of Thomson's instrument:<ref>{{ cite book | last = Munro | first = John | title = Heroes of the Telegraph | date = July 1997 | publisher = Project Gutenberg | url = http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?num=979 }}</ref> {{cquote|The mirror galvanometer consists of a long fine coil of silk-covered copper wire. In the heart of that coil, within a little air-chamber, a small round mirror is hung by a single fibre of floss silk, with four tiny magnets cemented to its back. A beam of light is thrown from a lamp upon the mirror, and reflected by it upon a white screen or scale a few feet distant, where it forms a bright spot of light. When there is no current on the instrument, the spot of light remains stationary at the zero position on the screen; but the instant a current traverses the long wire of the coil, the suspended magnets twist themselves horizontally out of their former position, the mirror is inclined with them, and the beam of light is deflected along the screen to one side or the other, according to the nature of the current. If a positive electric current gives a deflection to the right of zero, a negative current will give a deflection to the left of zero, and vice versa. The air in the little chamber surrounding the mirror is compressed at will, so as to act like a cushion, and deaden the movements of the mirror. The needle is thus prevented from idly swinging about at each deflection, and the separate signals are rendered abrupt. At a receiving station the current coming in from the cable has simply to be passed through the coil before it is sent into the ground, and the wandering light spot on the screen faithfully represents all its variations to the clerk, who, looking on, interprets these, and cries out the message word by word. The small weight of the mirror and magnets which form the moving part of this instrument, and the range to which the minute motions of the mirror can be magnified on the screen by the reflected beam of light, which acts as a long impalpable hand or pointer, render the mirror galvanometer marvellously sensitive to the current, especially when compared with other forms of receiving instruments. Messages could be sent from the United Kingdom to the United States through one Atlantic cable and back again through another, and there received on the mirror galvanometer, the electric current used being that from a toy battery made out of a lady's silver thimble, a grain of zinc, and a drop of acidulated water. The practical advantage of this extreme delicacy is that the signal waves of the current may follow each other so closely as almost entirely to coalesce, leaving only a very slight rise and fall of their crests, like ripples on the surface of a flowing stream, and yet the light spot will respond to each. The main flow of the current will of course shift the zero of the spot, but over and above this change of place the spot will follow the momentary fluctuations of the current which form the individual signals of the message. What with this shifting of the zero and the very slight rise and fall in the current produced by rapid signalling, the ordinary land line instruments are quite unserviceable for work upon long cables.}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mirror galvanometer
(section)
Add topic