Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Linear predictive coding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Overview== LPC starts with the assumption that a speech signal is produced by a buzzer at the end of a tube (for [[Voice (phonetics)|voiced]] sounds), with occasional added hissing and popping sounds (for [[Voicelessness|voiceless]] sounds such as [[sibilant]]s and [[plosive]]s). Although apparently crude, this [[Source–filter model]] is actually a close approximation of the reality of speech production. The [[glottis]] (the space between the vocal folds) produces the buzz, which is characterized by its intensity ([[loudness]]) and [[frequency]] (pitch). The [[vocal tract]] (the throat and mouth) forms the tube, which is characterized by its resonances; these resonances give rise to [[formant]]s, or enhanced frequency bands in the sound produced. Hisses and pops are generated by the action of the tongue, lips and throat during sibilants and plosives. LPC analyzes the speech signal by estimating the formants, removing their effects from the speech signal, and estimating the intensity and frequency of the remaining buzz. The process of removing the formants is called inverse filtering, and the remaining signal after the subtraction of the filtered modeled signal is called the residue. The numbers which describe the intensity and frequency of the buzz, the formants, and the residue signal, can be stored or transmitted somewhere else. LPC synthesizes the speech signal by reversing the process: use the buzz parameters and the residue to create a source signal, use the formants to create a filter (which represents the tube), and run the source through the filter, resulting in speech. Because speech signals vary with time, this process is done on short chunks of the speech signal, which are called frames; generally, 30 to 50 frames per second give an intelligible speech with good compression.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Linear predictive coding
(section)
Add topic