Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Laplace operator
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== The Laplace operator is a [[Second-order differential equation|second-order differential operator]] in the ''n''-dimensional [[Euclidean space]], defined as the [[divergence]] (<math>\nabla \cdot</math>) of the [[gradient]] (<math>\nabla f</math>). Thus if <math>f</math> is a [[derivative|twice-differentiable]] [[real-valued function]], then the Laplacian of <math>f</math> is the real-valued function defined by: {{NumBlk||<math display="block">\Delta f = \nabla^2 f = \nabla \cdot \nabla f </math>|{{EqRef|1}}}} where the latter notations derive from formally writing: <math display="block">\nabla = \left ( \frac{\partial }{\partial x_1} , \ldots , \frac{\partial }{\partial x_n} \right ).</math> Explicitly, the Laplacian of {{math|''f''}} is thus the sum of all the ''unmixed'' second [[partial derivative]]s in the [[Cartesian coordinates]] {{math|''x<sub>i</sub>''}}: {{NumBlk||<math display="block">\Delta f = \sum_{i=1}^n \frac {\partial^2 f}{\partial x^2_i}</math>|{{EqRef|2}}}} As a second-order differential operator, the Laplace operator maps {{math|[[Continuously differentiable|''C{{i sup|k}}'']]}} functions to {{math|''C''{{i sup|''k''β2}}}} functions for {{math|''k'' β₯ 2}}. It is a linear operator {{math|Ξ : ''C''{{i sup|''k''}}('''R'''<sup>''n''</sup>) β ''C''{{i sup|''k''β2}}('''R'''<sup>''n''</sup>)}}, or more generally, an operator {{math|Ξ : ''C''{{i sup|''k''}}(Ξ©) β ''C''{{i sup|''k''β2}}(Ξ©)}} for any [[open set]] {{math|Ξ© β '''R'''<sup>''n''</sup>}}. Alternatively, the Laplace operator can be defined as: <math display="block">\nabla^2 f(\vec{x}) = \lim_{R \rightarrow 0} \frac{2n}{R^2} (f_{shell_R} - f(\vec{x})) = \lim_{R \rightarrow 0} \frac{2n}{A_{n-1} R^{1+n}} \int_{shell_R} f(\vec{r}) - f(\vec{x}) d r^{n-1} </math> where <math>n</math> is the dimension of the space, <math>f_{shell_R} </math> is the average value of <math>f</math> on the surface of an [[n-sphere]] of radius <math>R</math>, <math>\int_{shell_R} f(\vec{r}) d r^{n-1}</math> is the surface integral over an [[n-sphere]] of radius <math>R</math>, and <math>A_{n-1}</math> is the [[Unit sphere#Volume and area|hypervolume of the boundary of a unit n-sphere]].<ref>{{Cite journal |last=Styer |first=Daniel F. |date=2015-12-01 |title=The geometrical significance of the Laplacian |url=https://pubs.aip.org/aapt/ajp/article-abstract/83/12/992/1057202/The-geometrical-significance-of-the-Laplacian?redirectedFrom=fulltext |journal=American Journal of Physics |volume=83 |issue=12 |pages=992β997 |doi=10.1119/1.4935133 |bibcode=2015AmJPh..83..992S |issn=0002-9505 |archive-url=https://www2.oberlin.edu/physics/dstyer/Electrodynamics/Laplacian.pdf |archive-date=20 November 2015}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Laplace operator
(section)
Add topic