Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
L'Hôpital's rule
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == [[Guillaume de l'Hôpital]] (also written l'Hospital{{efn|In the 17th and 18th centuries, the name was commonly spelled "l'Hospital", and he himself spelled his name that way. Since then, French spellings have [[Reforms of French orthography|changed]]: the silent 's' has been [[Circumflex in French#Indication of a lost phoneme|removed and replaced]] with a [[circumflex]] over the preceding vowel.}}) published this rule in his 1696 book ''[[Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes]]'' (literal translation: ''Analysis of the Infinitely Small for the Understanding of Curved Lines''), the first textbook on [[differential calculus]].<ref>{{Cite web | url=https://mathshistory.st-andrews.ac.uk/Biographies/De_LHopital/|title=De L'Hopital biography|first=John J.|last=O'Connor|author2=Robertson, Edmund F |work=The MacTutor History of Mathematics archive|publisher=School of Mathematics and Statistics, University of St Andrews|location=Scotland|access-date=21 December 2008}}</ref>{{efn|1="Proposition I. Problême. Soit une ligne courbe AMD (AP = x, PM = y, AB = a [see Figure 130] ) telle que la valeur de l'appliquée y soit exprimée par une fraction, dont le numérateur & le dénominateur deviennent chacun zero lorsque x = a, c'est à dire lorsque le point P tombe sur le point donné B. On demande quelle doit être alors la valeur de l'appliquée BD. [Solution: ]...si l'on prend la difference du numérateur, & qu'on la divise par la difference du denominateur, apres avoir fait x = a = Ab ou AB, l'on aura la valeur cherchée de l'appliquée bd ou BD." ''Translation'' : "Let there be a curve AMD (where AP = X, PM = y, AB = a) such that the value of the ordinate y is expressed by a fraction whose numerator and denominator each become zero when x = a; that is, when the point P falls on the given point B. One asks what shall then be the value of the ordinate BD. [Solution: ]... if one takes the differential of the numerator and if one divides it by the differential of the denominator, after having set x = a = Ab or AB, one will have the value [that was] sought of the ordinate bd or BD."<ref>{{cite book |author=L'Hospital |year=1696 |title=Analyse des infiniment petits |url=http://gallica.bnf.fr/ark%3A/12148/bpt6k205444w/f000171.tableDesMatieres |pages=145–146}}</ref>}} However, it is believed that the rule was discovered by the Swiss mathematician [[Johann Bernoulli]].<ref>{{cite book |title=A History of Mathematics |edition=3rd illustrated |first1=Carl B. |last1=Boyer |first2=Uta C. |last2=Merzbach |author2-link= Uta Merzbach |publisher=John Wiley & Sons |year=2011 |isbn=978-0-470-63056-3 |page=321 |url=https://books.google.com/books?id=bR9HAAAAQBAJ}} [https://books.google.com/books?id=bR9HAAAAQBAJ&pg=RA2-PT321 Extract of page 321]</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
L'Hôpital's rule
(section)
Add topic