Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Geometric distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== The geometric distribution is the [[discrete probability distribution]] that describes when the first success in an infinite sequence of [[Independent and identically distributed random variables|independent and identically distributed]] [[Bernoulli trial|Bernoulli trials]] occurs. Its [[probability mass function]] depends on its parameterization and [[Support (mathematics)|support]]. When supported on <math>\mathbb{N}</math>, the probability mass function is <math display="block">P(X = k) = (1 - p)^{k-1} p</math> where <math>k = 1, 2, 3, \dotsc</math> is the number of trials and <math>p</math> is the probability of success in each trial.<ref name=":1">{{Cite book |last1=Nagel |first1=Werner |url=https://onlinelibrary.wiley.com/doi/book/10.1002/9781119243496 |title=Probability and Conditional Expectation: Fundamentals for the Empirical Sciences |last2=Steyer |first2=Rolf |date=2017-04-04 |publisher=Wiley |isbn=978-1-119-24352-6 |edition=1st |series=Wiley Series in Probability and Statistics |pages= |language=en |doi=10.1002/9781119243496}}</ref>{{Rp|pages=260β261}} The support may also be <math>\mathbb{N}_0</math>, defining <math>Y=X-1</math>. This alters the probability mass function into <math display="block">P(Y = k) = (1 - p)^k p</math> where <math>k = 0, 1, 2, \dotsc</math> is the number of failures before the first success.<ref name=":2">{{Cite book |last1=Chattamvelli |first1=Rajan |url=https://link.springer.com/10.1007/978-3-031-02425-2 |title=Discrete Distributions in Engineering and the Applied Sciences |last2=Shanmugam |first2=Ramalingam |publisher=Springer International Publishing |year=2020 |isbn=978-3-031-01297-6 |series=Synthesis Lectures on Mathematics & Statistics |location=Cham |language=en |doi=10.1007/978-3-031-02425-2}}</ref>{{Rp|page=66}} An alternative parameterization of the distribution gives the probability mass function <math display="block">P(Y = k) = \left(\frac{P}{Q}\right)^k \left(1-\frac{P}{Q}\right)</math> where <math>P = \frac{1-p}{p}</math> and <math>Q = \frac{1}{p}</math>.<ref name=":8" />{{Rp|pages=208β209}} An example of a geometric distribution arises from rolling a six-sided [[dice|die]] <!-- "die" is the correct singular form of the plural "dice." -->until a "1" appears. Each roll is [[Independence (probability theory)|independent]] with a <math>1/6</math> chance of success. The number of rolls needed follows a geometric distribution with <math>p=1/6</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Geometric distribution
(section)
Add topic