Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fokker–Planck equation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==One dimension== In one spatial dimension ''x'', for an [[Itô calculus|Itô process]] driven by the standard [[Wiener process]] <math>W_t</math> and described by the [[stochastic differential equation]] (SDE) <math display="block">dX_t = \mu(X_t, t) \,dt + \sigma(X_t, t) \,dW_t</math> with [[Drift velocity|drift]] <math>\mu(X_t, t)</math> and [[diffusion]] coefficient <math>D(X_t, t) = \sigma^2(X_t, t)/2</math>, the Fokker–Planck equation for the probability density <math>p(x, t)</math> of the random variable <math>X_t</math> is <ref>{{Citation |title=The Fokker–Planck Equation: Methods of Solution and Applications |last=Risken |first=H. |volume=Second Edition, Third Printing |pages=72 |date=1996 |publication-date=1996}}</ref>{{Equation box 1|cellpadding|border|indent=:|equation=<math> \frac{\partial}{\partial t} p(x, t) = -\frac{\partial}{\partial x}\left[\mu(x, t) p(x, t)\right] + \frac{\partial^2}{\partial x^2}\left[D(x, t) p(x, t)\right]. </math>|border colour=#0073CF|background colour=#F5FFFA}}{{hidden begin |title = Link between the Itô SDE and the Fokker–Planck equation }} In the following, use <math>\sigma = \sqrt{2D}</math>. Define the [[Infinitesimal generator (stochastic processes)|infinitesimal generator]] <math>\mathcal{L}</math> (the following can be found in Ref.<ref name=ottinger>{{cite book|last=Öttinger|first=Hans Christian|title=Stochastic Processes in Polymeric Fluids|date=1996|publisher=Springer-Verlag|location=Berlin-Heidelberg|isbn=978-3-540-58353-0|page=75}}</ref>): <math display="block"> \mathcal{L}p(X_t) = \lim_{\Delta t \to 0} \frac1{\Delta t}\left(\mathbb{E}\big[p(X_{t + \Delta t}) \mid X_t = x \big] - p(x)\right). </math> The ''transition probability'' <math>\mathbb{P}_{t, t'}(x \mid x')</math>, the probability of going from <math>(t', x')</math> to <math>(t, x)</math>, is introduced here; the expectation can be written as <math display="block"> \mathbb{E}(p(X_{t + \Delta t}) \mid X_t = x) = \int p(y) \, \mathbb{P}_{t + \Delta t,t}(y \mid x) \,dy. </math> Now we replace in the definition of <math>\mathcal{L}</math>, multiply by <math>\mathbb{P}_{t, t'}(x \mid x')</math> and integrate over <math>dx</math>. The limit is taken on <math display="block"> \int p(y) \int \mathbb{P}_{t + \Delta t, t}(y \mid x)\,\mathbb{P}_{t, t'}(x \mid x') \,dx \,dy - \int p(x) \, \mathbb{P}_{t, t'}(x \mid x') \,dx. </math> Note now that <math display="block"> \int \mathbb{P}_{t + \Delta t, t}(y \mid x) \, \mathbb{P}_{t, t'}(x \mid x') \,dx = \mathbb{P}_{t + \Delta t, t'}(y \mid x'), </math> which is the Chapman–Kolmogorov theorem. Changing the dummy variable <math>y</math> to <math>x</math>, one gets <math display="block"> \begin{align} \int p(x) \lim_{\Delta t \to 0} \frac1{\Delta t} \left( \mathbb{P}_{t + \Delta t, t'}(x \mid x') - \mathbb{P}_{t, t'}(x \mid x') \right) \,dx, \end{align} </math> which is a time derivative. Finally we arrive to <math display="block"> \int [\mathcal{L}p(x)] \mathbb{P}_{t, t'}(x \mid x') \,dx = \int p(x) \, \partial_t \mathbb{P}_{t, t'}(x \mid x') \,dx. </math> From here, the Kolmogorov backward equation can be deduced. If we instead use the adjoint operator of <math>\mathcal{L}</math>, <math>\mathcal{L}^\dagger</math>, defined such that <math display="block"> \int [\mathcal{L}p(x)] \mathbb{P}_{t, t'}(x \mid x') \,dx = \int p(x) [\mathcal{L}^\dagger \mathbb{P}_{t, t'}(x \mid x')] \,dx, </math> then we arrive to the Kolmogorov forward equation, or Fokker–Planck equation, which, simplifying the notation <math>p(x, t) = \mathbb{P}_{t, t'}(x \mid x')</math>, in its differential form reads <math display="block"> \mathcal{L}^\dagger p(x, t) = \partial_t p(x, t). </math> Remains the issue of defining explicitly <math>\mathcal{L}</math>. This can be done taking the expectation from the integral form of the [[Itô's lemma]]: <math display="block"> \mathbb{E}\big(p(X_t)\big) = p(X_0) + \mathbb{E}\left(\int_0^t \left(\partial_t + \mu\partial_x + \frac{\sigma^2}{2}\partial_x^2 \right) p(X_{t'}) \,dt'\right). </math> The part that depends on <math>dW_t</math> vanished because of the martingale property. Then, for a particle subject to an Itô equation, using <math display="block"> \mathcal{L} = \mu\partial_x + \frac{\sigma^2}{2}\partial_x^2, </math> it can be easily calculated, using integration by parts, that <math display="block"> \mathcal{L}^\dagger = -\partial_x(\mu \cdot) + \frac12 \partial_x^2(\sigma^2 \cdot), </math> which bring us to the Fokker–Planck equation: <math display="block"> \partial_t p(x, t) = -\partial_x \big(\mu(x, t) \cdot p(x, t)\big) + \partial_x^2\left(\frac{\sigma(x, t)^2}{2} \, p(x,t)\right). </math> {{hidden end}} While the Fokker–Planck equation is used with problems where the initial distribution is known, if the problem is to know the distribution at previous times, the [[Feynman–Kac formula]] can be used, which is a consequence of the Kolmogorov backward equation. The stochastic process defined above in the Itô sense can be rewritten within the [[Stratonovich integral|Stratonovich convention]] as a Stratonovich SDE: <math display="block">dX_t = \left[\mu(X_t, t) - \frac{1}{2} \frac{\partial}{\partial X_t}D(X_t, t)\right] \,dt + \sqrt{2 D(X_t, t)} \circ dW_t.</math> In this form, a noise-induced drift term due to diffusion gradient effects is explicitly visible, arising when the noise is state-dependent. This formulation is commonly used in physics, as it makes for a more intuitive connection to physical processes. It is equivalent to the Itô SDE; any Itô SDE can be converted to Stratonovich form, and ''vice versa''. The zero-drift equation with constant diffusion can be considered as a model of classical [[Brownian motion]]: <math display="block">\frac{\partial}{\partial t} p(x, t) = D_0\frac{\partial^2}{\partial x^2}\left[p(x, t)\right].</math> This model has discrete spectrum of solutions if the condition of fixed boundaries is added for <math>\{0 \leq x \leq L\}</math>: <math display="block">\begin{align} p(0, t) &= p(L, t) = 0, \\ p(x, 0) &= p_0(x). \end{align}</math> It has been shown<ref name=kam2014>{{cite journal | last = Kamenshchikov | first = S. | title = Clustering and Uncertainty in Perfect Chaos Systems| journal = Journal of Chaos | volume = 2014 | pages = 1–6 | year = 2014 | doi=10.1155/2014/292096| arxiv = 1301.4481 | s2cid = 17719673 | doi-access = free }}</ref> that in this case an analytical spectrum of solutions allows deriving a local uncertainty relation for the coordinate-velocity phase volume: <math display="block"> \Delta x \, \Delta v \geq D_0. </math> Here <math>D_0</math> is a minimal value of a corresponding diffusion spectrum <math>D_j</math>, while <math>\Delta x</math> and <math>\Delta v</math> represent the uncertainty of coordinate–velocity definition.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fokker–Planck equation
(section)
Add topic