Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler–Maclaurin formula
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The formula== If {{mvar|m}} and {{mvar|n}} are [[natural number]]s and {{math|''f''(''x'')}} is a [[Real number|real]] or [[Complex number|complex]] valued [[continuous function]] for [[real number]]s {{mvar|x}} in the [[Interval (mathematics)|interval]] {{math|[''m'',''n'']}}, then the integral <math display=block>I = \int_m^n f(x)\,dx</math> can be approximated by the sum (or vice versa) <math display=block>S = f(m + 1) + \cdots + f(n - 1) + f(n)</math> (see [[Riemann sum#Right rule|rectangle method]]). The Euler–Maclaurin formula provides expressions for the difference between the sum and the integral in terms of the higher [[derivative]]s {{math|''f''{{isup|(''k'')}}(''x'')}} evaluated at the endpoints of the interval, that is to say {{math|''x'' {{=}} ''m''}} and {{math|''x'' {{=}} ''n''}}. Explicitly, for {{mvar|p}} a positive [[integer]] and a function {{math|''f''(''x'')}} that is {{mvar|p}} times [[continuously differentiable]] on the interval {{math|[''m'',''n'']}}, we have <math display=block>S - I = \sum_{k=1}^p {\frac{B_k}{k!} \left(f^{(k - 1)}(n) - f^{(k - 1)}(m)\right)} + R_p,</math> where {{mvar|B<sub>k</sub>}} is the {{mvar|k}}th [[Bernoulli numbers|Bernoulli number]] (with {{math|''B''<sub>1</sub> {{=}} {{sfrac|1|2}}}}) and {{mvar|R<sub>p</sub>}} is an [[numerical integration|error term]] which depends on {{mvar|n}}, {{mvar|m}}, {{mvar|p}}, and {{mvar|f}} and is usually small for suitable values of {{mvar|p}}. The formula is often written with the subscript taking only even values, since the odd Bernoulli numbers are zero except for {{math|''B''<sub>1</sub>}}. In this case we have<ref name=":0" /><ref name="DLMF">{{cite web|url=http://dlmf.nist.gov/2.10|title=Digital Library of Mathematical Functions: Sums and Sequences|publisher=[[National Institute of Standards and Technology]]}}</ref> <math display=block>\sum_{i=m}^n f(i) = \int^n_m f(x)\,dx + \frac{f(n) + f(m)}{2} + \sum_{k=1}^{\left\lfloor \frac{p}{2}\right\rfloor} \frac{B_{2k}}{(2k)!} \left(f^{(2k - 1)}(n) - f^{(2k - 1)}(m)\right) + R_p, </math> or alternatively <math display=block>\sum_{i=m+1}^n f(i) = \int^n_m f(x)\,dx + \frac{f(n) - f(m)}{2} + \sum_{k=1}^{\left\lfloor \frac{p}{2}\right\rfloor} \frac{B_{2k}}{(2k)!} \left(f^{(2k - 1)}(n) - f^{(2k - 1)}(m)\right) + R_p. </math> ===The remainder term=== {{see also|Bernoulli polynomials}} The remainder term arises because the integral is usually not exactly equal to the sum. The formula may be derived by applying repeated [[integration by parts]] to successive intervals {{math|[''r'', ''r'' + 1]}} for {{math|''r'' {{=}} ''m'', ''m'' + 1, …, ''n'' − 1}}. The boundary terms in these integrations lead to the main terms of the formula, and the leftover integrals form the remainder term. The remainder term has an exact expression in terms of the periodized Bernoulli functions {{math|''P<sub>k</sub>''(''x'')}}. The Bernoulli polynomials may be defined recursively by {{math|''B''<sub>0</sub>(''x'') {{=}} 1}} and, for {{math|''k'' ≥ 1}}, <math display=block>\begin{align} B_k'(x) &= kB_{k - 1}(x), \\ \int_0^1 B_k(x)\,dx &= 0. \end{align}</math> The periodized Bernoulli functions are defined as <math display=block>P_k(x) = B_k\bigl(x - \lfloor x\rfloor\bigr),</math> where {{math|⌊''x''⌋}} denotes the largest integer less than or equal to {{mvar|x}}, so that {{math|''x'' − ⌊''x''⌋}} always lies in the interval {{math|[0,1)}}. With this notation, the remainder term {{mvar|R<sub>p</sub>}} equals <math display="block">R_{p} = (-1)^{p+1}\int_m^n f^{(p)}(x) \frac{P_p(x)}{p!}\,dx. </math> When {{math|''k'' > 0}}, it can be shown that for {{math|0 ≤ ''x'' ≤ 1}}, <math display=block>\bigl|B_k(x)\bigr| \le \frac{2 \cdot k!}{(2\pi)^k}\zeta(k),</math> where {{mvar|ζ}} denotes the [[Riemann zeta function]]; one approach to prove this inequality is to obtain the Fourier series for the polynomials {{math|''B<sub>k</sub>''(''x'')}}. The bound is achieved for even {{mvar|k}} when {{mvar|x}} is zero. The term {{math|''ζ''(''k'')}} may be omitted for odd {{mvar|k}} but the proof in this case is more complex (see Lehmer).<ref name="Lehmer">{{cite journal|last1=Lehmer|first1=D. H.|author-link=D. H. Lehmer |title=On the maxima and minima of Bernoulli polynomials | date=1940 | journal=[[The American Mathematical Monthly]]|volume=47|issue=8|pages=533–538 |doi=10.2307/2303833|jstor=2303833}}</ref> Using this inequality, the size of the remainder term can be estimated as <math display=block>\left|R_p\right| \leq \frac{2 \zeta(p)}{(2\pi)^p}\int_m^n \left|f^{(p)}(x)\right|\,dx.</math> ===Low-order cases=== The Bernoulli numbers from {{math|''B''<sub>1</sub>}} to {{math|''B''<sub>7</sub>}} are {{math|{{sfrac|1|2}}, {{sfrac|1|6}}, 0, −{{sfrac|1|30}}, 0, {{sfrac|1|42}}, 0}}. Therefore, the low-order cases of the Euler–Maclaurin formula are: <math display=block>\begin{align} \sum_{i=m}^n f(i) - \int_m^n f(x)\,dx &= \frac{f(m)+f(n)}{2} + \int_m^n f'(x)P_1(x)\,dx \\ &=\frac{f(m)+f(n)}{2} + \frac{1}{6}\frac{f'(n) - f'(m)}{2!} - \int_m^n f''(x)\frac{P_2(x)}{2!}\,dx \\ &=\frac{f(m)+f(n)}{2} + \frac{1}{6}\frac{f'(n) - f'(m)}{2!} + \int_m^n f'''(x)\frac{P_3(x)}{3!}\,dx \\ &=\frac{f(m)+f(n)}{2} + \frac{1}{6}\frac{f'(n) - f'(m)}{2!} - \frac{1}{30}\frac{f'''(n) - f'''(m)}{4!}-\int_m^n f^{(4)}(x) \frac{P_4(x)}{4!}\, dx \\ &=\frac{f(m)+f(n)}{2} + \frac{1}{6}\frac{f'(n) - f'(m)}{2!} - \frac{1}{30}\frac{f'''(n) - f'''(m)}{4!} + \int_m^n f^{(5)}(x)\frac{P_5(x)}{5!}\,dx \\ &=\frac{f(m)+f(n)}{2} + \frac{1}{6}\frac{f'(n) - f'(m)}{2!} - \frac{1}{30}\frac{f'''(n) - f'''(m)}{4!} + \frac{1}{42}\frac{f^{(5)}(n) - f^{(5)}(m)}{6!} - \int_m^n f^{(6)}(x)\frac{P_6(x)}{6!}\,dx \\ &=\frac{f(m)+f(n)}{2} + \frac{1}{6}\frac{f'(n) - f'(m)}{2!} - \frac{1}{30}\frac{f'''(n) - f'''(m)}{4!} + \frac{1}{42}\frac{f^{(5)}(n) - f^{(5)}(m)}{6!} + \int_m^n f^{(7)}(x)\frac{P_7(x)}{7!}\,dx. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler–Maclaurin formula
(section)
Add topic