Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Elias delta coding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Encoding == To code a number ''X'' β₯ 1: # Let ''N'' = βlog<sub>2</sub> ''X''β; be the highest power of 2 in ''X'', so 2<sup>''N''</sup> β€ ''X'' < 2<sup>''N''+1</sup>. # Let ''L'' = βlog<sub>2</sub> ''N''+1β be the highest power of 2 in ''N''+1, so 2<sup>''L''</sup> β€ ''N''+1 < 2<sup>''L''+1</sup>. # Write ''L'' zeros, followed by # the ''L''+1-bit binary representation of ''N''+1, followed by # all but the leading bit (i.e. the last ''N'' bits) of ''X''. An equivalent way to express the same process: #Separate ''X'' into the highest power of 2 it contains (2<sup>''N''</sup>) and the remaining ''N'' binary digits. #Encode ''N''+1 with [[Elias gamma coding]]. #Append the remaining ''N'' binary digits to this representation of ''N''+1. To represent a number <math>x</math>, Elias delta (Ξ΄) uses <math>\lfloor \log_2(x) \rfloor + 2 \lfloor \log_2 (\lfloor \log_2(x) \rfloor +1) \rfloor + 1</math> bits.<ref name="Elias"/>{{rp|200}} This is useful for very large integers, where the overall encoded representation's bits end up being fewer [than what one might obtain using [[Elias gamma coding]]] due to the <math>\log_2 (\lfloor \log_2(x) \rfloor +1)</math> portion of the previous expression. The code begins, using <math>\gamma'</math> instead of <math>\gamma</math>: {| class="wikitable" ! Number !! N !! N+1 !! Ξ΄ encoding !! Implied probability |- | 1 = 2<sup>0</sup> || 0 || 1 || <code>1</code> || 1/2 |- |colspan=5| |- | 2 = 2<sup>1</sup> + ''0'' || 1 || 2 || <code>0 1 0 ''0''</code> || 1/16 |- | 3 = 2<sup>1</sup> + ''1'' || 1 || 2 || <code>0 1 0 ''1''</code> || 1/16 |- |colspan=5| |- | 4 = 2<sup>2</sup> + ''0'' || 2 || 3 || <code>0 1 1 ''00''</code> || 1/32 |- | 5 = 2<sup>2</sup> + ''1'' || 2 || 3 || <code>0 1 1 ''01''</code> || 1/32 |- | 6 = 2<sup>2</sup> + ''2'' || 2 || 3 || <code>0 1 1 ''10''</code> || 1/32 |- | 7 = 2<sup>2</sup> + ''3'' || 2 || 3 || <code>0 1 1 ''11''</code> || 1/32 |- |colspan=5| |- | 8 = 2<sup>3</sup> + ''0'' || 3 || 4 || <code>00 1 00 ''000''</code> || 1/256 |- | 9 = 2<sup>3</sup> + ''1'' || 3 || 4 || <code>00 1 00 ''001''</code> || 1/256 |- | 10 = 2<sup>3</sup> + ''2'' || 3 || 4 || <code>00 1 00 ''010''</code> || 1/256 |- | 11 = 2<sup>3</sup> + ''3'' || 3 || 4 || <code>00 1 00 ''011''</code> || 1/256 |- | 12 = 2<sup>3</sup> + ''4'' || 3 || 4 || <code>00 1 00 ''100''</code> || 1/256 |- | 13 = 2<sup>3</sup> + ''5'' || 3 || 4 || <code>00 1 00 ''101''</code> || 1/256 |- | 14 = 2<sup>3</sup> + ''6'' || 3 || 4 || <code>00 1 00 ''110''</code> || 1/256 |- | 15 = 2<sup>3</sup> + ''7'' || 3 || 4 || <code>00 1 00 ''111''</code> || 1/256 |- |colspan=5| |- | 16 = 2<sup>4</sup> + ''0'' || 4 || 5 || <code>00 1 01 ''0000''</code> || 1/512 |- | 17 = 2<sup>4</sup> + ''1'' || 4 || 5 || {{nowrap|<code>00 1 01 ''0001''</code>}} || 1/512 |} To decode an Elias delta-coded integer: #Read and count zeros from the stream until you reach the first one. Call this count of zeros ''L''. #Considering the one that was reached to be the first digit of an integer, with a value of 2<sup>''L''</sup>, read the remaining ''L'' digits of the integer. Call this integer ''N''+1, and subtract one to get ''N''. #Put a one in the first place of our final output, representing the value 2<sup>''N''</sup>. #Read and append the following ''N'' digits. Example: 001010011 1. 2 leading zeros in 001 2. read 2 more bits i.e. 00101 3. decode N+1 = 00101 = 5 4. get N = 5 β 1 = 4 remaining bits for the complete code i.e. '0011' 5. encoded number = 2<sup>4</sup> + 3 = 19 This code can be generalized to zero or negative integers in the same ways described in [[Elias gamma coding#Generalizations|Elias gamma coding]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Elias delta coding
(section)
Add topic