Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dihedral group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== The word "dihedral" comes from "di-" and "-hedron". The latter comes from the Greek word hédra, which means "face of a geometrical solid". Overall it thus refers to the two faces of a polygon. ===Elements=== [[File:Hexagon reflections.svg|thumb|The six axes of [[reflection symmetry|reflection]] of a regular hexagon]] A regular polygon with <math>n</math> sides has <math>2n</math> different symmetries: <math>n</math> [[rotational symmetry|rotational symmetries]] and <math>n</math> [[reflection symmetry|reflection symmetries]]. Usually, we take <math>n \ge 3</math> here. The associated [[rotation]]s and [[reflection (mathematics)|reflections]] make up the dihedral group <math>\mathrm{D}_n</math>. If <math>n</math> is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If <math>n</math> is even, there are <math>n/2</math> axes of symmetry connecting the midpoints of opposite sides and <math>n/2</math> axes of symmetry connecting opposite vertices. In either case, there are <math>n</math> axes of symmetry and <math>2n</math> elements in the symmetry group.<ref>{{citation | last = Cameron | first = Peter Jephson | title = Introduction to Algebra | publisher = Oxford University Press | year = 1998 | isbn = 9780198501954 | page = 95 | url = https://books.google.com/books?id=syYYl-NVM5IC&pg=PA95 }}</ref> Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes.<ref>{{citation | last = Toth | first = Gabor | title = Glimpses of Algebra and Geometry | series = Undergraduate Texts in Mathematics | edition = 2nd | publisher = Springer | year = 2006 | isbn = 9780387224558 | page = 98 | url = https://books.google.com/books?id=IRwBCAAAQBAJ&pg=PA98 }}</ref> [[File:Dihedral8.png|550px|thumb|center|This picture shows the effect of the sixteen elements of <math>\mathrm{D}_8</math> on a [[stop sign]]. Here, the first row shows the effect of the eight rotations, and the second row shows the effect of the eight reflections, in each case acting on the stop sign with the orientation as shown at the top left.]] ===Group structure=== As with any geometric object, the [[composition of functions|composition]] of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, this gives the symmetries of a polygon the algebraic structure of a [[finite group]].<ref name=lovett>{{citation|title=Abstract Algebra: Structures and Applications|first=Stephen|last=Lovett|publisher=CRC Press|year=2015|isbn=9781482248913|page=71|url=https://books.google.com/books?id=jRUqCgAAQBAJ&pg=PA71}}</ref> [[File:Labeled Triangle Reflections.svg|thumb|The lines of reflection labelled S<sub>0</sub>, S<sub>1</sub>, and S<sub>2</sub> remain fixed in space (on the page) and do not themselves move when a symmetry operation (rotation or reflection) is done on the triangle (this matters when doing compositions of symmetries).]] [[File:Two Reflection Rotation.svg|thumb|The composition of these two reflections is a rotation.]] The following [[Cayley table]] shows the effect of composition in the group [[Dihedral group of order 6|D<sub>3</sub>]] (the symmetries of an [[equilateral triangle]]). r<sub>0</sub> denotes the identity; r<sub>1</sub> and r<sub>2</sub> denote counterclockwise rotations by 120° and 240° respectively, and s<sub>0</sub>, s<sub>1</sub> and s<sub>2</sub> denote reflections across the three lines shown in the adjacent picture. {| class=wikitable width=200 !||r<sub>0</sub>||r<sub>1</sub>||r<sub>2</sub>||s<sub>0</sub>||s<sub>1</sub>||s<sub>2</sub> |- !r<sub>0</sub> | r<sub>0</sub> || r<sub>1</sub> || r<sub>2</sub> | s<sub>0</sub> || s<sub>1</sub> || s<sub>2</sub> |- !r<sub>1</sub> | r<sub>1</sub> || r<sub>2</sub> || r<sub>0</sub> | s<sub>1</sub> || s<sub>2</sub> || s<sub>0</sub> |- !r<sub>2</sub> | r<sub>2</sub> || r<sub>0</sub> || r<sub>1</sub> | s<sub>2</sub> || s<sub>0</sub> || s<sub>1</sub> |- !s<sub>0</sub> | s<sub>0</sub> || s<sub>2</sub> || s<sub>1</sub> | r<sub>0</sub> || r<sub>2</sub> || r<sub>1</sub> |- !s<sub>1</sub> | s<sub>1</sub> || s<sub>0</sub> || s<sub>2</sub> | r<sub>1</sub> || r<sub>0</sub> || r<sub>2</sub> |- !s<sub>2</sub> | s<sub>2</sub> || s<sub>1</sub> || s<sub>0</sub> | r<sub>2</sub> || r<sub>1</sub> || r<sub>0</sub> |} For example, {{nowrap|1=s<sub>2</sub>s<sub>1</sub> = r<sub>1</sub>}}, because the reflection s<sub>1</sub> followed by the reflection s<sub>2</sub> results in a rotation of 120°. The order of elements denoting the [[composition of functions|composition]] is right to left, reflecting the convention that the element acts on the expression to its right. The composition operation is not [[commutativity|commutative]].<ref name=lovett/> In general, the group D<sub>''n''</sub> has elements r<sub>0</sub>, ..., r<sub>''n''−1</sub> and s<sub>0</sub>, ..., s<sub>''n''−1</sub>, with composition given by the following formulae: :<math>\mathrm{r}_i\,\mathrm{r}_j = \mathrm{r}_{i+j}, \quad \mathrm{r}_i\,\mathrm{s}_j = \mathrm{s}_{i+j}, \quad \mathrm{s}_i\,\mathrm{r}_j = \mathrm{s}_{i-j}, \quad \mathrm{s}_i\,\mathrm{s}_j = \mathrm{r}_{i-j}.</math> In all cases, addition and subtraction of subscripts are to be performed using [[modular arithmetic]] with modulus ''n''. ===Matrix representation=== [[File:Pentagon Linear.png|thumb|The symmetries of this pentagon are [[linear transformation]]s of the plane as a vector space.]] If we center the regular polygon at the origin, then elements of the dihedral group act as [[linear map|linear transformations]] of the [[Cartesian coordinate system|plane]]. This lets us represent elements of D<sub>''n''</sub> as [[Matrix (mathematics)|matrices]], with composition being [[matrix multiplication]]. This is an example of a (2-dimensional) [[group representation]]. For example, the elements of the group [[Dihedral group of order 8|D<sub>4</sub>]] can be represented by the following eight matrices: :<math>\begin{matrix} \mathrm{r}_0 = \left(\begin{smallmatrix} 1 & 0 \\[0.2em] 0 & 1 \end{smallmatrix}\right), & \mathrm{r}_1 = \left(\begin{smallmatrix} 0 & -1 \\[0.2em] 1 & 0 \end{smallmatrix}\right), & \mathrm{r}_2 = \left(\begin{smallmatrix} -1 & 0 \\[0.2em] 0 & -1 \end{smallmatrix}\right), & \mathrm{r}_3 = \left(\begin{smallmatrix} 0 & 1 \\[0.2em] -1 & 0 \end{smallmatrix}\right), \\[1em] \mathrm{s}_0 = \left(\begin{smallmatrix} 1 & 0 \\[0.2em] 0 & -1 \end{smallmatrix}\right), & \mathrm{s}_1 = \left(\begin{smallmatrix} 0 & 1 \\[0.2em] 1 & 0 \end{smallmatrix}\right), & \mathrm{s}_2 = \left(\begin{smallmatrix} -1 & 0 \\[0.2em] 0 & 1 \end{smallmatrix}\right), & \mathrm{s}_3 = \left(\begin{smallmatrix} 0 & -1 \\[0.2em] -1 & 0 \end{smallmatrix}\right). \end{matrix}</math> In general, the matrices for elements of D<sub>''n''</sub> have the following form: :<math>\begin{align} \mathrm{r}_k & = \begin{pmatrix} \cos \frac{2\pi k}{n} & -\sin \frac{2\pi k}{n} \\ \sin \frac{2\pi k}{n} & \cos \frac{2\pi k}{n} \end{pmatrix}\ \ \text{and} \\[5pt] \mathrm{s}_k & = \begin{pmatrix} \cos \frac{2\pi k}{n} & \sin \frac{2\pi k}{n} \\ \sin \frac{2\pi k}{n} & -\cos \frac{2\pi k}{n} \end{pmatrix} . \end{align}</math> r<sub>''k''</sub> is a [[rotation matrix]], expressing a counterclockwise rotation through an angle of {{nowrap|2''πk''/''n''}}. s<sub>''k''</sub> is a reflection across a line that makes an angle of {{nowrap|''πk''/''n''}} with the ''x''-axis. ===Other definitions=== {{math|D{{sub|''n''}}}} is the [[semidirect product]] of <math>\mathrm C_2 = \{1, s\}</math> acting on <math>\mathrm C_n</math> via the automorphism <math>\varphi_s(r) = r^{-1}</math>.<ref name="mac-lane">{{cite book |last1=Mac Lane |first1=Saunders |author-link1=Saunders Mac Lane |last2=Birkhoff |first2=Garrett |author-link2=Garrett Birkhoff |title=Algebra |edition=3rd |year=1999 |publisher=American Mathematical Society |isbn=0-8218-1646-2 |pages=414–415}}</ref> It hence has [[presentation of a group|presentation]]<ref>{{cite book |last1=Johnson |first1=DL |title=Presentations of groups |date=1990 |publisher=Cambridge University Press |location=Cambridge, U.K. ; New York, NY, USA |isbn=9780521585422 |page=140 |url=https://archive.org/details/presentationsofg0000john_z8f6/page/140}}</ref> : <math>\begin{align} \mathrm{D}_n &= \left\langle r, s \mid \operatorname{ord}(r) = n, \operatorname{ord}(s) = 2, srs^{-1} = r^{-1} \right\rangle \\ &= \left\langle r, s \mid \operatorname{ord}(r) = n, \operatorname{ord}(s) = 2, srs = r^{-1} \right\rangle \\ &= \left\langle r,s \mid r^n = s^2 = (sr)^2 = 1 \right\rangle. \end{align}</math> Using the relation <math>s^2 = 1</math>, we obtain the relation <math>r= s \cdot sr</math>. It follows that <math>\mathrm D_n</math> is generated by <math>s</math> and <math>t:=sr</math>. This substitution also shows that <math>\mathrm D_n</math> has the presentation :<math> \mathrm{D}_n = \left\langle s,t \mid s^2=1, t^2 = 1, (st)^n=1\right\rangle . </math> In particular, {{math|D{{sub|''n''}}}} belongs to the class of [[Coxeter group]]s.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dihedral group
(section)
Add topic