Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Del
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== In the [[Cartesian coordinate system]] <math>\mathbb{R}^n</math> with coordinates <math>(x_1, \dots, x_n)</math> and [[standard basis]] <math>\{\mathbf e_1, \dots, \mathbf e_n \}</math>, del is a vector operator whose <math>x_1, \dots, x_n</math> components are the [[partial derivative]] operators <math>{\partial \over \partial x_1}, \dots, {\partial \over \partial x_n}</math>; that is, :<math> \nabla = \sum_{i=1}^n \mathbf e_i {\partial \over \partial x_i} = \left({\partial \over \partial x_1}, \ldots, {\partial \over \partial x_n} \right)</math> Where the expression in parentheses is a row vector. In [[three-dimensional]] Cartesian coordinate system <math>\mathbb{R}^3</math> with coordinates <math>(x, y, z)</math> and standard basis or unit vectors of axes <math>\{\mathbf e_x, \mathbf e_y, \mathbf e_z \}</math>, del is written as :<math>\nabla = \mathbf{e}_x {\partial \over \partial x} + \mathbf{e}_y {\partial \over \partial y} + \mathbf{e}_z {\partial \over \partial z}= \left({\partial \over \partial x}, {\partial \over \partial y}, {\partial \over \partial z} \right) </math> As a vector operator, del naturally acts on scalar fields via scalar multiplication, and naturally acts on vector fields via dot products and cross products. More specifically, for any scalar field <math>f</math> and any vector field <math>\mathbf{F}=(F_x, F_y, F_z)</math>, if one ''defines'' :<math>\left(\mathbf{e}_i {\partial \over \partial x_i}\right) f := {\partial \over \partial x_i}(\mathbf{e}_i f) = {\partial f \over \partial x_i}\mathbf{e}_i</math> :<math>\left(\mathbf{e}_i {\partial \over \partial x_i}\right) \cdot \mathbf{F} := {\partial \over \partial x_i}(\mathbf{e}_i\cdot \mathbf{F}) = {\partial F_i \over \partial x_i}</math> :<math>\left(\mathbf{e}_x {\partial \over \partial x}\right) \times \mathbf{F} := {\partial \over \partial x}(\mathbf{e}_x\times \mathbf{F}) = {\partial \over \partial x}(0, -F_z, F_y)</math> :<math>\left(\mathbf{e}_y {\partial \over \partial y}\right) \times \mathbf{F} := {\partial \over \partial y}(\mathbf{e}_y\times \mathbf{F}) = {\partial \over \partial y}(F_z,0,-F_x)</math> :<math>\left(\mathbf{e}_z {\partial \over \partial z}\right) \times \mathbf{F} := {\partial \over \partial z}(\mathbf{e}_z\times \mathbf{F}) = {\partial \over \partial z}(-F_y,F_x,0),</math> then using the above definition of <math>\nabla</math>, one may write :<math> \nabla f =\left(\mathbf{e}_x {\partial \over \partial x}\right)f + \left(\mathbf{e}_y {\partial \over \partial y}\right)f + \left(\mathbf{e}_z {\partial \over \partial z}\right)f = {\partial f \over \partial x}\mathbf{e}_x + {\partial f \over \partial y}\mathbf{e}_y + {\partial f \over \partial z}\mathbf{e}_z </math> and :<math> \nabla \cdot \mathbf{F} = \left(\mathbf{e}_x {\partial \over \partial x}\cdot \mathbf{F}\right) + \left(\mathbf{e}_y {\partial \over \partial y}\cdot \mathbf{F}\right) + \left(\mathbf{e}_z {\partial \over \partial z}\cdot \mathbf{F}\right)= {\partial F_x \over \partial x} + {\partial F_y \over \partial y} + {\partial F_z \over \partial z} </math> and :<math>\begin{align} \nabla \times \mathbf{F} &= \left(\mathbf{e}_x {\partial \over \partial x}\times \mathbf{F}\right) + \left(\mathbf{e}_y {\partial \over \partial y}\times \mathbf{F}\right) + \left(\mathbf{e}_z {\partial \over \partial z}\times \mathbf{F}\right)\\ &= {\partial \over \partial x}(0, -F_z, F_y) + {\partial \over \partial y}(F_z,0,-F_x) + {\partial \over \partial z}(-F_y,F_x,0)\\ &= \left({\partial F_z \over \partial y}-{\partial F_y \over \partial z}\right)\mathbf{e}_x + \left({\partial F_x \over \partial z}-{\partial F_z \over \partial x}\right)\mathbf{e}_y + \left({\partial F_y \over \partial x}-{\partial F_x \over \partial y}\right)\mathbf{e}_z \end{align}</math> :'''Example:''' :<math>f(x, y, z) = x + y + z </math> :<math>\nabla f = \mathbf{e}_x {\partial f \over \partial x} + \mathbf{e}_y {\partial f \over \partial y} + \mathbf{e}_z {\partial f \over \partial z} = \left(1, 1, 1 \right) </math> : Del can also be expressed in other coordinate systems, see for example [[del in cylindrical and spherical coordinates]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Del
(section)
Add topic