Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cyclotomic polynomial
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== If ''n'' is a [[prime number]], then :<math>\Phi_n(x) = 1+x+x^2+\cdots+x^{n-1}=\sum_{k=0}^{n-1} x^k.</math> If ''n'' = 2''p'' where ''p'' is a [[prime number]] other than 2, then :<math>\Phi_{2p}(x) = 1-x+x^2-\cdots+x^{p-1}=\sum_{k=0}^{p-1} (-x)^k.</math> For ''n'' up to 30, the cyclotomic polynomials are:<ref>{{Cite OEIS|A013595|mode=cs2}}</ref> :<math>\begin{align} \Phi_1(x) &= x - 1 \\ \Phi_2(x) &= x + 1 \\ \Phi_3(x) &= x^2 + x + 1 \\ \Phi_4(x) &= x^2 + 1 \\ \Phi_5(x) &= x^4 + x^3 + x^2 + x +1 \\ \Phi_6(x) &= x^2 - x + 1 \\ \Phi_7(x) &= x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_8(x) &= x^4 + 1 \\ \Phi_9(x) &= x^6 + x^3 + 1 \\ \Phi_{10}(x) &= x^4 - x^3 + x^2 - x + 1 \\ \Phi_{11}(x) &= x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{12}(x) &= x^4 - x^2 + 1 \\ \Phi_{13}(x) &= x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{14}(x) &= x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \\ \Phi_{15}(x) &= x^8 - x^7 + x^5 - x^4 + x^3 - x + 1 \\ \Phi_{16}(x) &= x^8 + 1 \\ \Phi_{17}(x) &= x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\\ \Phi_{18}(x) &= x^6 - x^3 + 1 \\ \Phi_{19}(x) &= x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\\ \Phi_{20}(x) &= x^8 - x^6 + x^4 - x^2 + 1 \\ \Phi_{21}(x) &= x^{12} - x^{11} + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1 \\ \Phi_{22}(x) &= x^{10} - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \\ \Phi_{23}(x) &= x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} \\ & \qquad\quad + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{24}(x) &= x^8 - x^4 + 1 \\ \Phi_{25}(x) &= x^{20} + x^{15} + x^{10} + x^5 + 1 \\ \Phi_{26}(x) &= x^{12} - x^{11} + x^{10} - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 \\ \Phi_{27}(x) &= x^{18} + x^9 + 1 \\ \Phi_{28}(x) &= x^{12} - x^{10} + x^8 - x^6 + x^4 - x^2 + 1 \\ \Phi_{29}(x) &= x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} \\ & \qquad\quad + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \\ \Phi_{30}(x) &= x^8 + x^7 - x^5 - x^4 - x^3 + x + 1. \end{align}</math> The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3Γ5Γ7) and this polynomial is the first one that has a [[coefficient]] other than 1, 0, or β1:<ref>{{citation | last = Brookfield | first = Gary | doi = 10.4169/math.mag.89.3.179 | issue = 3 | journal = Mathematics Magazine | jstor = 10.4169/math.mag.89.3.179 | mr = 3519075 | pages = 179β188 | title = The coefficients of cyclotomic polynomials | volume = 89 | year = 2016}}</ref> :<math>\begin{align} \Phi_{105}(x) ={}&x^{48} + x^{47} + x^{46} - x^{43} - x^{42} - 2 x^{41} - x^{40} - x^{39} + x^{36} + x^{35} + x^{34} \\ &{}+ x^{33} + x^{32} + x^{31} - x^{28} - x^{26} - x^{24} - x^{22} - x^{20} + x^{17} + x^{16} + x^{15} \\ &{}+ x^{14} + x^{13} + x^{12} - x^9 - x^8 - 2 x^7 - x^6 - x^5 + x^2 + x + 1. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cyclotomic polynomial
(section)
Add topic