Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cholesky decomposition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Statement == The Cholesky decomposition of a [[Hermitian matrix|Hermitian]] [[positive-definite matrix]] {{math|'''A'''}}, is a decomposition of the form <math display=block>\mathbf{A} = \mathbf{L L}^{*},</math> where {{math|'''L'''}} is a [[lower triangular matrix]] with real and positive diagonal entries, and {{math|'''L'''}}* denotes the [[conjugate transpose]] of {{math|'''L'''}}. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition.<ref>{{harvtxt|Golub|Van Loan|1996|p=143}}, {{harvtxt|Horn|Johnson|1985|p=407}}, {{harvtxt|Trefethen|Bau|1997|p=174}}.</ref> The converse holds trivially: if {{math|'''A'''}} can be written as {{math|'''LL'''*}} for some invertible {{math|'''L'''}}, lower triangular or otherwise, then {{math|'''A'''}} is Hermitian and positive definite. When {{math|'''A'''}} is a real matrix (hence symmetric positive-definite), the factorization may be written <math display=block>\mathbf{A} = \mathbf{L L}^\mathsf{T},</math> where {{math|'''L'''}} is a real lower triangular matrix with positive diagonal entries.<ref>{{harvtxt|Horn|Johnson|1985|p=407}}.</ref><ref>{{Cite web|url=https://mathoverflow.net/questions/125960/diagonalizing-a-complex-symmetric-matrix|title=matrices - Diagonalizing a Complex Symmetric Matrix|website=MathOverflow|access-date=2020-01-25}}</ref><ref>{{Cite journal|last1=Schabauer|first1=Hannes|last2=Pacher|first2=Christoph|last3=Sunderland|first3=Andrew G.|last4=Gansterer|first4=Wilfried N.|date=2010-05-01|title=Toward a parallel solver for generalized complex symmetric eigenvalue problems|journal=Procedia Computer Science|series=ICCS 2010|language=en|volume=1|issue=1|pages=437β445|doi=10.1016/j.procs.2010.04.047|issn=1877-0509|doi-access=free}}</ref> === Positive semidefinite matrices === If a Hermitian matrix {{math|'''A'''}} is only positive semidefinite, instead of positive definite, then it still has a decomposition of the form {{math|1='''A''' = '''LL'''*}} where the diagonal entries of {{math|'''L'''}} are allowed to be zero.<ref>{{harvtxt|Golub|Van Loan|1996|p=147}}.</ref> The decomposition need not be unique, for example: <math display=block>\begin{bmatrix}0 & 0 \\0 & 1\end{bmatrix} = \mathbf L \mathbf L^*, \quad \quad \mathbf L=\begin{bmatrix}0 & 0\\ \cos \theta & \sin\theta\end{bmatrix},</math> for any {{mvar|ΞΈ}}. However, if the rank of {{math|'''A'''}} is {{mvar|r}}, then there is a unique lower triangular {{math|'''L'''}} with exactly {{mvar|r}} positive diagonal elements and {{math|''n'' β ''r''}} columns containing all zeroes.<ref> {{Cite book |last=Gentle |first=James E. |date=1998 |title=Numerical Linear Algebra for Applications in Statistics |isbn=978-1-4612-0623-1 |publisher=Springer |language=en |page= 94}}</ref> Alternatively, the decomposition can be made unique when a pivoting choice is fixed. Formally, if {{math|'''A'''}} is an {{math|''n'' Γ ''n''}} positive semidefinite matrix of rank {{mvar|r}}, then there is at least one permutation matrix {{math|'''P'''}} such that {{math|'''P A P'''<sup>T</sup>}} has a unique decomposition of the form {{math|1='''P A P'''<sup>T</sup> = '''L L'''<sup>*</sup>}} with <math display=inline> \mathbf L = \begin{bmatrix} \mathbf L_1 & 0 \\ \mathbf L_2 & 0\end{bmatrix} </math>, where {{math|'''L'''<sub>1</sub>}} is an {{math|''r'' Γ ''r''}} lower triangular matrix with positive diagonal.<ref>{{Cite book |last=Higham |first=Nicholas J. |chapter-url=http://eprints.maths.manchester.ac.uk/1193/ |title=Reliable Numerical Computation |publisher=Oxford University Press |year=1990 |isbn=978-0-19-853564-5 |editor-last=Cox |editor-first=M. G. |location=Oxford, UK |pages=161β185 |language=en |editor-last2=Hammarling |editor-first2=S. J. |chapter=Analysis of the Cholesky Decomposition of a Semi-definite Matrix}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cholesky decomposition
(section)
Add topic