Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bilinear transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Discrete-time approximation == The bilinear transform is a first-order [[PadΓ© approximant]] of the natural logarithm function that is an exact mapping of the ''z''-plane to the ''s''-plane. When the [[Laplace transform]] is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed [[Dirac delta function|unit impulse]]), the result is precisely the [[Z transform]] of the discrete-time sequence with the substitution of :<math> \begin{align} z &= e^{sT} \\ &= \frac{e^{sT/2}}{e^{-sT/2}} \\ &\approx \frac{1 + s T / 2}{1 - s T / 2} \end{align} </math> where <math> T </math> is the [[numerical integration]] step size of the [[trapezoidal rule]] used in the bilinear transform derivation;<ref>{{cite book |title=Discrete Time Signal Processing Third Edition |last=Oppenheim |first=Alan |year=2010 |publisher=Pearson Higher Education, Inc. |location=Upper Saddle River, NJ |isbn=978-0-13-198842-2 |page=504}}</ref> or, in other words, the sampling period. The above bilinear approximation can be solved for <math> s </math> or a similar approximation for <math> s = (1/T) \ln(z) </math> can be performed. The inverse of this mapping (and its first-order bilinear [[Logarithm#Power series|approximation]]) is :<math> \begin{align} s &= \frac{1}{T} \ln(z) \\ &= \frac{2}{T} \left[\frac{z-1}{z+1} + \frac{1}{3} \left( \frac{z-1}{z+1} \right)^3 + \frac{1}{5} \left( \frac{z-1}{z+1} \right)^5 + \frac{1}{7} \left( \frac{z-1}{z+1} \right)^7 + \cdots \right] \\ &\approx \frac{2}{T} \frac{z - 1}{z + 1} \\ &= \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \end{align} </math> The bilinear transform essentially uses this first order approximation and substitutes into the continuous-time transfer function, <math> H_a(s) </math> :<math>s \leftarrow \frac{2}{T} \frac{z - 1}{z + 1}.</math> That is :<math>H_d(z) = H_a(s) \bigg|_{s = \frac{2}{T} \frac{z - 1}{z + 1}}= H_a \left( \frac{2}{T} \frac{z-1}{z+1} \right). \ </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bilinear transform
(section)
Add topic